hdu 4965 Fast Matrix Calculation(矩阵快速幂)2014多校训练第9场

Fast Matrix Calculation

                                                                  Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072
K (Java/Others)

Problem Description

One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K
matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element
is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B.

Step 2: Calculate M = C^(N*N).

Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.

Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

Input

The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line
has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.

Output

For each case, output the sum of all the elements in M’ in a line.

Sample Input

4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0

Sample Output

14
56

比赛时没有转化,就按照题目描述的方法求,结果一直超时,各种优化后还是超时。看了题解后才明白要转化一下。

题意:给出一个矩阵n*k的矩阵A和一个k*n的矩阵B,矩阵C=A*B,然后求C^(n*n),对新矩阵里的每一个元素对6取余后,求新矩阵里所有元素的和。

分析:如果直接算A*B的话,得到的是1000*1000的矩阵,所以会一直超时。因为C^(n*n)=(A*B)^(n*n)=A*(B*A)^(n*n-1)*B,由于B*A是6*6的矩阵,再用矩阵快速幂来求就行了。

#include<cstdio>
#include<algorithm>
using namespace std;

const int N = 1005;
#define mod 6
struct Matrix
{
    int mat[10][10];
} ;
Matrix unit_matrix, c;
int A[N][10], B[10][N], aa[N][10], bb[N][N];
int n, k;

Matrix mul(Matrix a, Matrix b) //矩阵相乘
{
    Matrix res;
    for(int i = 0; i < k; i++)
        for(int j = 0; j < k; j++)
        {
            res.mat[i][j] = 0;
            for(int t = 0; t < k; t++)
            {
                res.mat[i][j] += a.mat[i][t] * b.mat[t][j];
                res.mat[i][j] %= mod;
            }
        }
    return res;
}

Matrix pow_matrix(Matrix a, int m)  //矩阵快速幂
{
    Matrix res = unit_matrix;
    while(m != 0)
    {
        if(m & 1)
            res = mul(res, a);
        a = mul(a, a);
        m >>= 1;
    }
    return res;
}

int main()
{
    int  i, j, t;
    while(~scanf("%d%d",&n,&k) && (n+k))
    {
        for(i = 0; i < n; i++)
            for(j = 0; j < k; j++)
               scanf("%d",&A[i][j]);
        for(i = 0; i < k; i++)
            for(j = 0; j < n; j++)
                scanf("%d",&B[i][j]);

        //初始化单位矩阵
        for(i = 0; i < k; i++)
            for(j = 0; j < k; j++)
                unit_matrix.mat[i][j] = 0;
        for(i = 0; i < n; i++)
            unit_matrix.mat[i][i] = 1;

        for(i = 0; i < k; i++) //求B*A
        {
            for(j = 0; j < k; j++)
            {
                c.mat[i][j] = 0;
                for(t = 0; t < n; t++)
                {
                    c.mat[i][j] += B[i][t] * A[t][j];
                    c.mat[i][j] %= mod;
                }
            }
        }

        Matrix ans = pow_matrix(c, n*n-1);

        for(i = 0; i < n; i++)
        {
            for(j = 0; j < k; j++)
            {
                aa[i][j] = 0;
                for(t = 0; t < k; t++)
                {
                    aa[i][j] += A[i][t] * ans.mat[t][j];
                    aa[i][j] %= mod;
                }
            }
        }

        for(i = 0; i < n; i++)
        {
            for(j = 0; j < n; j++)
            {
                bb[i][j] = 0;
                for(t = 0; t < k; t++)
                {
                    bb[i][j] += aa[i][t] * B[t][j];
                    bb[i][j] %= mod;
                }
            }
        }

        int sum = 0;
        for(i = 0; i < n; i++)
            for(j = 0; j <n; j++)
                sum += bb[i][j];
        printf("%d\n", sum);
    }
    return 0;
}

hdu 4965 Fast Matrix Calculation(矩阵快速幂)2014多校训练第9场

时间: 2024-10-10 23:37:12

hdu 4965 Fast Matrix Calculation(矩阵快速幂)2014多校训练第9场的相关文章

hdu 4965 Fast Matrix Calculation(矩阵快速幂)

题目链接:hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N: 矩阵C = A*B 矩阵M=CN?N 将矩阵M中的所有元素取模6,得到新矩阵M' 计算矩阵M'中所有元素的和 解题思路:因为矩阵C为N*N的矩阵,N最大为1000,就算用快速幂也超时,但是因为C = A*B, 所以CN?N=ABAB-AB=AC′N?N?1B,C' = B*A, 为K*K的矩阵,K最大为6,完全可以接受. #include <cstdio> #inc

HDU 4965 Fast Matrix Calculation (矩阵快速幂取模----矩阵相乘满足结合律)

http://acm.hdu.edu.cn/showproblem.php?pid=4965 利用相乘的可结合性先算B*A,得到6*6的矩阵,利用矩阵快速幂取模即可水过. 1 #include<iostream> 2 #include<stdio.h> 3 #include<iostream> 4 #include<stdio.h> 5 #define N 1010 6 #define M 1010 7 #define K 6 8 using namespa

HDU 4965 Fast Matrix Calculation(矩阵高速幂)

题目大意:给你两个数字n和k,然后给你两个矩阵a是n*k的和b是k*n的,矩阵c = a*b,让你求c^(n*n). 直接求的话c是n*n的矩阵所以是1000*1000.会超时的啊. 能够转化一下:(a*b)^(n*n)=a*(b*a)^(n*n-1)*b.b*a能够得到一个k*k的矩阵,k非常小所以不会超时.高速幂一下就能够了啊. Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 13

HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律

一种奇葩的写法,纪念一下当时的RE. 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cmath> 6 #include <algorithm> 7 #include <string> 8 #include <queue> 9 #include <stack>

HDU 4965 Fast Matrix Caculation ( 矩阵乘法 + 矩阵快速幂 + 矩阵乘法的结合律 )

HDU 4965 Fast Matrix Calculation ( 矩阵乘法 + 矩阵快速幂 + 矩阵乘法的结合律 ) #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define MAX_SIZE 1001 #define CLR( a, b ) memset( a, b, sizeof(a) ) #define MOD 6 typedef long lo

HDU 4965 Fast Matrix Calculation(矩阵快速幂)

HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次,可以变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个只有6x6,就可以用矩阵快速幂搞了 代码: #include <cstdio> #include <cstring> const int N = 1005; const int M = 10; int n, m; int A[N][M], B[M][N], C[M][M], CC[N]

HDU 4965 Fast Matrix Calculation(矩阵高速幂)

HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个仅仅有6x6.就能够用矩阵高速幂搞了 代码: #include <cstdio> #include <cstring> const int N = 1005; const int M = 10; int n, m; int A[N][M], B[M][N], C[M][M], CC[N

HDU 4965 Fast Matrix Calculation 【矩阵】

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4965 题目大意:给你一个N*K的矩阵A以及一个K*N的矩阵B (4 <= N <= 1000)以及 (2 <=K <= 6),然后接下来四步: 算一个新的矩阵C=A*B 算M=C^ (N*N) 对于M中的每个元素%6 将M中每个元素加起来,算出和. 也就是求出A*B * A*B * A*B * A*B * A*B *--* A*B   但是A*B形成的矩阵是N*N,而N大小有可能是10

hdu 4970 Killing Monsters(简单题) 2014多校训练第9场

Killing Monsters                                                                        Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Problem Description Kingdom Rush is a popular TD game, in which you should b