How many integers can you find
Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5517 Accepted Submission(s): 1580
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10},
all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2 2 3
Sample Output
7
Author
wangye
Source
2008
“Insigma International Cup” Zhejiang Collegiate Programming Contest - Warm Up(4)
Recommend
wangye
题目意思是给出数n和一个包含m个数的集合,要求的是小于n,且是集合内任意元素的倍数的数有多少。(有点绕,多读两遍就理解了)。
这个题目要用到的原理是容斥原理,什么是容斥原理呢?大概学过集合或者概率论的都知道吧!
容斥原理:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
本题的关键是要如何实现容斥原理,最简单的就是直接暴力,数据比较水能过,还有一种方法就是用dfs优化。
两种方法均可,只是时间复杂度的大小问题。
此题还有一点点小坑,稍不细心的人就可能掉进去(比如我……T_T……),集合中元素可能包含0,要先筛选一遍才能操作……不多说了,直接上代码:
/* Author:ZXPxx Memory: 1616 KB Time: 202 MS Language: C++ Result: Accepted */ #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <string> #include <vector> #include <cmath> #include <ctime> #include <queue> #include <stack> #include <set> #include <map> using namespace std; typedef long long LL; const int maxn = 5e5 + 5; const int inf = 0x3f3f3f3f; int a[130],n,m,ans,p,cur; int gcd(int a,int b) { return !b ? a:gcd(b,a%b); } int lcm(int a,int b) { return a/gcd(a,b)*b; } void dfs(int i,int flag,int k) { k=lcm(a[i],k); ans+=n/(k*flag); for(int j=i+1;j<cur;j++) dfs(j,-flag,k); } int main() { while(~scanf("%d %d",&n,&m)) { cur=0; for(int i=0; i<m; i++) { scanf("%d",&p); if(p) a[cur++]=p; } ans=0;n--; for(int i=0; i < cur; i++) { dfs(i,1,a[i]); } printf("%d\n",ans); } return 0; }
爆搜的代码也来一发。。。
/* Author:ZXPxx Memory: 1648 KB Time: 998 MS Language: C++ Result: Accepted */ #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <string> #include <vector> #include <cmath> #include <ctime> #include <queue> #include <stack> #include <set> #include <map> using namespace std; typedef long long LL; const int maxn = 5e5 + 5; const int inf = 0x3f3f3f3f; int a[130],m,n,p,cur,ans; int gcd(int a,int b) { return !b ? a:gcd(b,a%b); } int lcm(int a,int b) { return a/gcd(a,b)*b; } int main() { while(~scanf("%d %d",&n,&m)) { n--; cur=0; ans=0; for(int i=0; i<m; i++) { scanf("%d",&p); if(p) a[cur++]=p; } for(int i= 1;i < pow(2,cur); i++) { int cnt=0,flag=0,k=1; for(int j = 0; j < cur; j++) { if(i>>j & 1) { k=lcm(k,a[j]); if(k>n) { flag=1; break; } cnt++; } } if(flag) continue; if(cnt%2) ans+=n/k; else ans-=n/k; } printf("%d\n",ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。