To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 46788 | Accepted: 24774 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
最大子段和的二维版本,把第i行到第j行合并成一行,做法就和一维的一样了,只要枚举i和j,找出最大值即为答案。
1 //2016.8.21 2 #include<iostream> 3 #include<cstdio> 4 #include<cstring> 5 6 using namespace std; 7 8 const int N = 105; 9 const int inf = 0x3f3f3f3f; 10 int a[N][N]; 11 12 int main() 13 { 14 int n, tmp; 15 while(scanf("%d", &n)!=EOF) 16 { 17 for(int i = 0; i < n; i++) 18 for(int j = 0; j < n; j++) 19 scanf("%d", &a[i][j]); 20 21 int ans = -inf; 22 for(int i = 0; i < n-1; i++) 23 { 24 //把第j行合并到第i行,求出第i行到第j行的最大子段和************** 25 for(int j = i; j < n; j++) 26 { 27 tmp = 0; 28 for(int k = 0; k < n; k++) 29 { 30 if(j > i) a[i][k]+=a[j][k];//把矩阵合并为一维的数组 31 if(tmp > 0) tmp += a[i][k]; 32 else tmp = a[i][k]; 33 ans = max(ans, tmp); 34 } 35 } 36 //************************************************************** 37 } 38 39 cout<<ans<<endl; 40 } 41 42 return 0; 43 }