Real Adaboost总结

Real Adaboost分类器是对经典Adaboost分类器的扩展和提升,经典Adaboost分类器的每个弱分类器仅输出{1,0}或{+1,-1},分类能力较弱,Real Adaboost的每个弱分类器输出的是一个实数值(这也是为什么叫“Real”),可以认为是一个置信度。和LUT(look-up table)结合之后,表达复杂函数的能力比经典Adaboost更强。

接下来分三部分,第一部分解释经典Adaboost,第二部分解释Real Adaboost,第三部分举例说明

一、经典Adaboost

经典Adaboost分类器的训练过程如下:

虽然弱分类器的样式没有限制,可以是基于多维特征的决策树,甚至是SVM,但通常每个弱分类器都是基于所有特征中的某一维构建,并且输出的结果只有+1,-1两种(对于二分类)。因此,在训练时,每一轮迭代都挑选在当前训练集分布下,分类效果最好的那一维特征对应的弱分类器。

在预测时,输入一个样本,经典Adaboost将所有弱分类器输出的{-1,+1}值带权相加,作为最后结果。为了得到不同的准确率和召回率,使用者可以设置不同的threshold。例如:如果输出是0.334,那么如果设置threshold=0,分类结果为+1,如果threshold=0.5,分类结果为-1.

二、Real Adaboost

Real Adaboost分类器的训练过程如下:

三、举例说明

第二部分里面介绍的Real Adaboost训练估计大部分人看起来还是挺费解的,举个例子说明一下。在堪称经典的《fast rotation invariant multi-view face detection based on real adaboost》一文中,就用到了real adaboost。首先,论文从滑动窗口中提取了很多haar特征,如果不知道haar特征是什么,可以参考我的博客Viola Jones Face Detector。然后对于每一个haar特征,将其归一化到[0,1],再对其做64等分。也就是说把0-1等分成了64份。这就是二里面说的若干个互不相交的子空间。接下来的计算和二里面一致,在这64个子空间里面计算正负样本的带权和W(+1)、W(-1),再用这两个值计算弱分类器输出和归一化因子Z。最终选择Z最小的那一个haar特征上的弱分类器作为该轮迭代选取出的弱分类器。这个弱分类器,其实就是对于64个子空间有64个对应的实数输出值。在预测时,如果把64个值保存到数组中,我们就可以使用查表的方式来计算任意输入特征对应的分类器输出了。假设输入的haar特征是0.376(已经归一化了),0.376/(1/64)=24.064,那么这个值落在了第24个子空间中,也就是数组中的第24个元素的值。即当前弱分类器的输出值。最后我们再将所有弱分类器的输出求和,并设置好阈值b,就可以得到最终的强分类器输出结果了。就是这么简单。

Real Adaboost总结

时间: 2024-08-07 04:31:50

Real Adaboost总结的相关文章

决策树 随机森林 adaboost

? 熵.互信息? 决策树学习算法 ? 信息增益 ? ID3.C4.5.CART? Bagging与随机森林? 提升 ? Adaboost/GDBT ? 熵.互信息 熵是对平均不确定性的度量. 平均互信息:得知特征Y的信息而使得对标签X的信息的不确定性减少的程度.描述随机变量之间的相似程度.(条件熵.相对熵:差异性) ? 决策树 决策树学习采用的是自顶向下的递归方法,有监督学习. 其基本思想是以信息熵为度量构造一棵熵值下降最快的树,到叶子节点处的熵值为零,此时每个叶节点中的实例都属于同一类. 建立

Adaboost提升算法从原理到实践

1.基本思想: 综合某些专家的判断,往往要比一个专家单独的判断要好.在"强可学习"和"弱科学习"的概念上来说就是我们通过对多个弱可学习的算法进行"组合提升或者说是强化"得到一个性能赶超强可学习算法的算法.如何地这些弱算法进行提升是关键!AdaBoost算法是其中的一个代表. 2.分类算法提升的思路: 1.找到一个弱分类器,分类器简单,快捷,易操作(如果它本身就很复杂,而且效果还不错,那么进行提升无疑是锦上添花,增加复杂度,甚至上性能并没有得到提升

《机器学习实战》学习笔记:利用Adaboost元算法提高分类性能

一. 关于boosting算法的起源 boost 算法系列的起源来自于PAC Learnability(直译过来称为:PAC 可学习性).这套理论主要研究的是什么时候一个问题是可被学习的. 我们知道,可计算性在计算理论中已经有定义,而可学习性正是PAC Learnability理论所要定义的内容.另外,在计算理论中还有很大一部分精力花在研究问题是可计算的时候,其复杂度又是什么样的.因此,在计算学习理论中,也有研究可学习的问题的复杂度的内容,主要是样本复杂度 (Sample Complexity)

监督算法大比拼之BP、SVM、adaboost非线性多分类实验

写在之前: 前些文章曾经细数过从决策树.贝叶斯算法等一些简单的算法到神经网络(BP).支持向量机(SVM).adaboost等一些较为复杂的机器学习算法(对其中感兴趣的朋友可以往前的博客看看),各种算法各有优缺点,基本上都能处理线性与非线性样本集,然通观这些算法来看,个人感觉对于数据(无论线性还是非线性)的分类上来说,里面比较好的当数BP.SVM.adaboost元算法这三种了,由于前面在介绍相应算法原理以及实验的时候所用的样本以及分类情况都是二分类的,对于多分类的情况未曾涉及过,而实际情况往往

利用Adaboost提高分类性能

Adaboost为一种集成算法,是对其他算法进行组合的一种方式. 本文将通过单层决策树分类器建立一个Adaboost优化算法,即利用多个弱分类器构建一个强分类器. 弱分类器:分类器性能比随机猜测要略好,但是也不会好太多. 强分类器:分类器性能比随机猜测好很多. 下面结合代码说明Adaboost算法原理和思路: 单层决策树是一种简单的决策树,仅基于单个特征来做决策. 首先加载简单的训练数据. def loadSimpleData(): dataMat = np.mat( [ [1.0,2.1],

Spark ML下实现的多分类adaboost+naivebayes算法在文本分类上的应用

1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一篇文档$d$中出现的词$w_0,w_1,...,w_n$, 这篇文章被分类为$c$的概率为$$p(c|w_0,w_1,...,w_n) = \frac{p(c,w_0,w_1,...,w_n)}{p(w_0,w_1,...,w_n)} = \frac{p(w_0,w_1,...,w_n|c)*p(c

Adaboost算法原理分析和实例+代码(简明易懂)

Adaboost算法原理分析和实例+代码(简明易懂) [尊重原创,转载请注明出处] http://blog.csdn.net/guyuealian/article/details/70995333     本人最初了解AdaBoost算法着实是花了几天时间,才明白他的基本原理.也许是自己能力有限吧,很多资料也是看得懵懵懂懂.网上找了一下关于Adaboost算法原理分析,大都是你复制我,我摘抄你,反正我也搞不清谁是原创.有些资料给出的Adaboost实例,要么是没有代码,要么省略很多步骤,让初学者

OpenCV中的Haar+Adaboost(五):AdaBoost之DAB与GAB

之前的文章主要讲解了OpenCV中与检测相关的内容,包括Haar特征.积分图和检测分类器结构:之后的文章将逐步开始介绍训练相关的内容.而本节主要介绍AdaBoost的理论,以及AdaBoost中的DAB与GAB算法,为后续讲解奠定基础. (一) AdaBoost背景介绍 在了解AdaBoost之前,先介绍弱学习和强学习的概念: 1. 弱学习:识别错误率小于1/2,即准确率仅比随机猜测略高的学习算法 2. 强学习:识别准确率很高并能在多项式时间内完成的学习算法 显然,无论对于任何分类问题,弱学习都

用cart(分类回归树)作为弱分类器实现adaboost

在之前的决策树到集成学习里我们说了决策树和集成学习的基本概念(用了adaboost昨晚集成学习的例子),其后我们分别学习了决策树分类原理和adaboost原理和实现, 上两篇我们学习了cart(决策分类树),决策分类树也是决策树的一种,也是很强大的分类器,但是cart的深度太深,我们可以指定cart的深度使得cart变成强一点的弱分类器. 在决策树到集成学习我们提到,单棵复杂的决策树可以达到100%,而简单的集成学习只能有85%的正确率,下面我们尝试用强一点的弱分类器来看下集成学习的效果有没有提

adaboost原理与理论

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器).其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值.将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器.对adaBoost算法的研究以及应用大多集中于分类问题,同时也出现了一些在回归问题上的应用.就其应用ad