opencv hog算子

  梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。

HOG特征是一种局部区域描述符,它通过计算局部区域上的梯度方向直方图来构成人体特征,能够很好地描述人体的边缘。它对光照变化和小量的偏移不敏感。

图像中像素点(x,y)的梯度为

Dalal提出的Hog特征提取的过程:把样本图像分割为若干个像素的单元(cell),把梯度方向平均划分为9个区间(bin),在每个单元里面对所有像素的梯度方向在各个方向区间进行直方图统计,得到一个9维的特征向量,每相邻的4个单元构成一个块(block),把一个块内的特征向量联起来得到36维的特征向量,用块对样本图像进行扫描,扫描步长为一个单元。最后将所有块的特征串联起来,就得到了人体的特征。例如,对于64*128的图像而言,每2*2的单元(16*16的像素)构成一个块,每个块内有4*9=36个特征,以8个像素为步长,那么,水平方向将有7个扫描窗口,垂直方向将有15个扫描窗口。也就是说,64*128的图片,总共有36*7*15=3780个特征。

在行人检测过程中,除了上面提到的HOG特征提取过程,还包括彩图转灰度,亮度校正等步骤。总结一下,在行人检测中,HOG特征计算的步骤:

(1)将输入的彩图转换为灰度图;

(2)采用Gamma校正法对输入图像进行颜色空间的标准化(归一化);   目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;

(3)计算梯度;主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。

(4)将梯度投影到单元的梯度方向;目的是为局部图像区域提供一个编码,

(5)将所有单元格在块上进行归一化;归一化能够更进一步对光照、阴影和边缘进行压缩,通常,每个单元格由多个不同的块共享,但它的归一化是基于不同块的,所以计算结果也不一样。因此,一个单元格的特征会以不同的结果多次出现在最后的向量中。我们将归一化之后的块描述符就称之为HOG描述符。

(6)收集得到检测空间所有块的HOG特征;该步骤就是将检测窗口中所有重叠的块进行HOG特征的收集,并将它们结合成最终的特征向量供分类使用。

时间: 2024-09-30 06:39:35

opencv hog算子的相关文章

Opencv拉普拉斯算子做图像增强

Opencv拉普拉斯算子——图像增强 #include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; //拉普拉斯处理 cv::Mat laplaceMat(cv::Mat imgParam); int main(int argc, char *argv[]) { Mat image = imread("D:\\images\\JK$DPF6315~A4G

opencv HOG中detectMultiScale函数详解

参考:http://www.cnblogs.com/tornadomeet/archive/2012/08/15/2640754.html 函数作用:进行多尺度目标检测 函数接口 void HOGDescriptor::detectMultiScale( const Mat& img, vector<Rect>& foundLocations, vector<double>& foundWeights, double hitThreshold, Size w

《OpenCV:Sobel算子理论与OpenCV代码实现》

索贝尔算子(Sobeloperator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值.在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量 Sobel卷积因子为: 该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值.如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下: 具体计算如下: 图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小:

学习OpenCV——HOG+SVM

#include "cv.h" #include "highgui.h" #include "stdafx.h" #include <ml.h> #include <iostream> #include <fstream> #include <string> #include <vector> using namespace cv; using namespace std; int ma

Opencv Laplace算子

//通过拉普拉斯-锐化边缘 kernel = (Mat_<float>(3,3)<<1,1,1,1,-8,1,1,1,1);//Laplace算子 filter2D(img2, img_laplance, CV_32F,kernel, Point(-1, -1), 0, BORDER_DEFAULT); img2.convertTo(img_sharp, CV_32F); img3 = img_sharp - img_laplance; img3.convertTo(img3, C

Opencv HOG特征检测

HOGDescriptor hogDescriptor = HOGDescriptor(); hogDescriptor.setSVMDetector(hogDescriptor.getDefaultPeopleDetector()); vector<Rect> vec_rect; hogDescriptor.detectMultiScale(img1, vec_rect, 0, Size(4, 4), Size(64, 64), 1.05, 2); for (size_t t=0;t<

hog源码分析

http://www.cnblogs.com/tornadomeet/archive/2012/08/15/2640754.html 在博客目标检测学习_1(用opencv自带hog实现行人检测) 中已经使用了opencv自带的函数detectMultiScale()实现了对行人的检测,当然了,该算法采用的是hog算法,那么hog算法是怎样实现的呢?这一节就来简单分析一下opencv中自带 hog源码. 网上也有不少网友对opencv中的hog源码进行了分析,很不错,看了很有收获.比如: htt

opencv中的 HOGDescriptor 类

其定义在  object.hpp中找到的: [cpp] view plain copy struct CV_EXPORTS_W HOGDescriptor { public: enum { L2Hys=0 }; enum { DEFAULT_NLEVELS=64 }; CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), cellSize(8,8), nbins(9), derivApertu

HOG特征(毕业论文节选)

各位看客,如发现错误(应该还有一些),望不吝指教.因为有删减,所以不是特别详细具体 以前写的内容: Opencv HOG行人检测 源码分析(一) HOG(Histograms of Oriented Gradients)特征是Dalal于2005年针对行人检测问题提出的特征,能够大体描述行人的轮廓[12].HOG特征是目前行人检测领域最常用的特征.对于其它非行人目标的检测,HOG特征也取得了突出效果,可以说是目标检测邻域,单一特征中效果最好的特征[26].此外,HOG特征还被应用到姿态估计[62