提高开关速度 -- 电容加速电路

基本的晶体管开关电路

饱和开关的问题点:OFF延时时间

如图1所示,使场效应晶体管开关动作时,加给晶体管的基极电流IB:

IB=IC/hFE,决定的值大的电流。

这是由于晶体管的集电极一发射极饱和电压VCE(set)减小,使晶体管的ON时的电力损耗降低的缘故。

这样,晶体管饱和动作时,如图2所示,基极电流IB,即使为0,晶体管也不能立刻OFF,

集电极电流在积蓄(strage)时间tstg+上升时间tr,之后才变为0(toff=tstg=tr)。

图1 基本的晶体管开关电路

图2 为使开关高速,减小toff很重要

用于OFF晶体管的时间莎。toff比用于ON的时间ton要长,而且根据驱动基极的条件变化很大,这在高速开关电路中必需注意。

如上图,问题是,输出端的波形下降沿和上升沿不可能是垂直的,有个斜率,

如何减小这个斜率(就是让边沿陡一点),我说把基极对地的电阻加大一点,

他说不对,还说让我加个东西就行了,想不出来,我想了一下不可能是电容,二极管也不太对,

真的没想到好的答案,晕死,这么简单的电路想不出来

谢谢各位了,哎,加个电容,我原来还看见过这种电路的,怎么就没有想起来呢,

说一句,那家单位是做伺服的,主要想想这么简单的东西不太会问的,疏忽了

BE间的电阻还有个很重要的作用,那就是泄放PN结电容存储的点荷,

使晶体管很快地从饱和区进入截止区,在高频或晶体管频率太低时,

这电阻尤为重要,对输出上升沿影响很大(假定是反相用法),电阻应该减小,

真正的高频电路中甚至小到几十欧。要加个东西,使边沿陡峭点,又没说是什么东西,那就再输出端加个门作缓冲器吧。

在基极限流电阻旁并一小电容,能加速三极管的开关动作。

另把集电极电阻减小,能显著加速输出的上升速度。

改变基极的两个电阻阻值,在特定条件下也有一定的效果。

集电极电阻取小主要是考虑电容负载的问题

根据内阻,要调整参数

有肖特基箝位

无肖特基箝位

电容加速

从上面的讨论可否得这样的结论:

要提高输出脉冲的前后沿速度,就要加大激励信号,又要避免晶体管深饱和造成存储延迟,于是:
1.用电容加速,只在前后沿大激励,即提高了沿的速度,又不至深饱和
2.整个脉冲大激励,提高沿的速度,用肖特基箝位来避免深饱和.

就上面的电路参数仿真看,电容对沿的加速作用似乎更明显.

1、加速电容构成微分电路,利用电容两端电压不能突变的特性让输入瞬间的变化量直接引入到三极管基极,

用过冲加快三极管的状态变化。等过渡过程结束后又回归到两个电阻的直流分压,所以电容不影响饱和深度;

2、在基-集间加二极管箝位,可避免深饱和,给三极管节省了从深饱和退出的时间,使整个导通→截止的变化曲线平移提前了。

即使不用二极管箝位,根据输入电平适当计算两个基极电阻的比值,也能避免三极管深饱和

下面这个电路中,高速开关二极管(1N4148)与电阻R1的作用是当晶体管截止时,

为反向基极电流提供一个低阻抗的通路。这个为“开关”关的动作提供了尽可能快的支持,因为它迅速让电荷从三极管的pn势垒电容里释放掉。

脉冲电路中最常用的反相器电路

就拿脉冲电路中最常用的反相器电路(图 1 )来说,从电路形式上看,它和放大电路中的共发射极电路很相似。

在放大电路中,基极电阻 R b2 是接到正电源上以取得基极偏压;而这个电路中,为了保证电路可靠地截止,

R b2 是接到一个负电源上的,而且 R b1 和 R b2 的数值是按晶体管能可靠地进入饱和区或止区的要求计算出来的。

不仅如此,为了使晶体管开关速度更快,在基极上还加有加速电容 C ,在脉前沿产生正向尖脉冲可使晶体管快速进入导通并饱和;

在脉冲后沿产生负向尖脉冲使晶体管快速进入截止状态。

除了射极输出器是个特例,脉冲电路中的晶体管都是工作在开关状态的,这是一个特点。

脉冲电路的另一个特点是一定有电容器(用电感较少)作关键元件,脉冲的产生、波形的变换都离不开电容器的充放电。

箝位器

能把脉冲电压维持在某个数值上而使波形保持不变的电路称为箝位器。它也是整形电路的一种。例如电视信号在传输过

会造成失真,为了使脉冲波形恢复原样,接收机里就要用箝位电路把波形顶部箝制在某个固定电平上。

图 8 中反相器输出端上就有一个箝位二极管 VD 。

如果没有这个二极管,输出脉冲高电平应该是 12 伏,现在增加了箝位二极管,输出脉冲高电平被箝制在 3 伏上。

加速电容器(speed-up capacitors)

在要求快速切换动作的应用中,必须加快三极管开关的切换速度。

图7为一种常见的方式,此方法只须在RB电阻上并联一只加速电容器,

如此当Vin由零电压往上升并开始送电流至基极时,电容器由于无法瞬间充电,故形同短路,

然而此时却有瞬间的大电流由电容器流向基极,因此也就加快了开关导通的速度。

稍后,待充电完毕后,电容就形同开路,而不影响三极管的正常工作。

加速电路及其波形

加速电容器C和三极管输入电阻R组成微分电路。

在输入信号正跳变时,可提供比无加速电容大得多的正向基极电流,使三极管很快达到饱和,见图。

在输入信号下跳时,又可提供很大的反向基极电流,使基区存储的电荷消散,三极管迅速进入截止状态。

电容加速电路

电容加速电路也是经常在设计中用到的一种实用电路。如图1所示:

这是在脉冲放大器电路中的一种的应用。其中的三极管VT1是工作在开关状态下。

开头提到的所谓加速,就是加快响应速度,加快对输入信号的响应速度。

从图1中的三极管VT1来看,就是要求三极管在截止,饱和两种状态之间的转换速度越快越好。

那么图1中的电路是如何起到加速作用呢?

为了做一个比较与便于理解,先简单分析没有加入加速电容之前的电路,如图2所示。

在图2中,当输入Ui是矩形脉冲信号加到VT1基极时,

若Ui为高,VT1饱和导 通,若Ui为低,VT1截止。

在接入C1后,如图1所示,其可等效成如图3所示的微分电路:

此时还是加入同样的输入信号Ui:

当Ui从低 —>高时,由于微分电路的作用,使加到基极的电压出现一个尖顶脉冲,

使基极的电流很大,从而加快了VT1从截止进入导通的速度,缩短了时间。

在t0之后,对C1的充电很快就结束,这时Ui加到基极的电压较小,维持VT1导 通。

当Ui从高 —>低时,即t1时刻,由于C1上原先的电压极性为左正右负,

这一电压加到基极为负顶脉冲,加快了从基区抽出电荷,使VT1以更快的速度从饱和转换到截止,

缩短了VT1的截止时间。

上述的Ui和Uo的波形如图4所示,直观反映了电容加速电路的工作原理。

1.分析加速电容电路三要点

分析这一电路工作原理首先要搞清楚下列三个方面的问题,才能做到有的放矢:

(1)脉冲放大器中的三极管工作在开关状态下,即一种工作状态是饱和,另一种是截止。
要求三极管从截止、饱和两种状态之间转换的速度愈快愈好,加速电容电路就是用来加速这种转换的电路,
了解这一点对理解加速电容电路工作原理有益。

(2)了解微分电路工作原理。

(3)掌握电容两端不能突变的特性,这对分析加速电容的工作原理非常重要。掌握电容充电和放电特性,加速电容在工作过程中就是充电和放电的过程。

2.利用微分电路分析加速电容电路的方法

电路分析的基本方法和思路是:

当输入电压Ui是一个矩形脉冲信号,它是加到三极管VT1基极的电压,当Ui为高>电平时给三极管VT1正向偏置电压而使之饱和导通,当Ui为低电平时给VT1管反向偏置电压而使之状态。

第二步讨论接入加速电容C1之后的电路工作原理。

从电路中可以看出,加速如图14所示是脉冲放大器电路。
电路中,VT1是三极管,构成脉冲放大管,C1并联在R1上,C1是加速电容。
C1的作用是加快VT1管导通和截止的转换速度,所以称为加速电容,许多电路的名称是根据电路所起作用而来的。

第二步讨论接入加速电容C1之后的电路工作原理。

从电路中可以看出,加速电容Cl与三极管VT1的输入电阻Ri构成微分电路,如下图所示等效电路和波形示意图。

根据微分电路的有关特性可知,当输入信号电压Ui从OV跳变到高电平时,由于电容c1和Ri微分电路的作用,

使加到VTl管基极的电压出现一个尖顶脉冲,见输出电压UO波形所示,在t0时刻这一尖顶脉冲使VT1管基极电流很大,

这样VT1管迅速从截止状态进入饱和状态,加速了VT1管的饱和导通,缩短了VT1管饱和导通时间。

在t0之后,对Cl的充电很快结束,这时输入信号电压Ui加到VT1管基极的电压比较小,维持VT1管的饱和导通状态。

当输入信号电压Ui从高电平突然跳变到OV时,即t1时刻,由于C1上原先充到的电压极性为左+右一,见图中所示,这一电压加到VT1管基极电压,

为负尖项脉冲,由于加到VT1管基极的电压为负,加快了VT1管从基区抽出电荷,使VT1管以更快的速度迅速从饱和状态转换到截止状态,缩短了VT1管截止时间。

3.电路分析方法提示

(1)加速电容电路主要出现在电子开关电路或脉冲放大器电路中,对于音频放大器电路不用这种电路。在脉冲放大器中的输入信号为脉冲信号。

(2)通过对电路分析可知,由于接入电容C1,使VT1管以更快的迅速进入饱和状态,
同样也是以更快的迅速进入截止,可见电容C1具有加速VT1管工作状态转换的作用,所以将C1称为加速电容。

Improving BJT Switching Time

时间: 2024-10-16 11:22:18

提高开关速度 -- 电容加速电路的相关文章

从名称认识电容在电路中的作用

单片机晶振问题及解决方法小结:http://www.21ic.com/jichuzhishi/mcu/questions/2013-03-07/160002.html 它具有隔断直流.连通交流.阻止低频的特性.广泛应用在耦合.隔直.旁路.滤波.调谐.能量转换和自动控制等电路中 1.滤波电容 :它接在直流电源的正.负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑.一般常采用大容量的电解电容器,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电. 2.退耦电容:并接于放大电路的电源正

一周搞定模拟电路P3_电容_记录

1 电容的介绍 什么是电容 它有两个电极板,和中间板所夹的介质封装而成,具有特定功能的电子器件. 电容的作用 旁路.去耦.滤波和储能的作用 2 旁路电容的作用 1)使输入电压均匀化,减少噪声对后级的影响. 例如:外界有一些交流信号干扰时,由于电容具有通交流隔直流的功能,那些交流干扰信号就会通过电容通入地里. 或者输入信号不稳定,就如上图蓝线所示,通过加上这些电容,也能够让电压如红线一样稳定下来. 2)进行储能,当外界信号变化过快时,及时进行电压的补偿 例如:CPU引脚上高低电平变换的比较快,VC

关于去耦电容和旁路电容

旁路电容不是理论概念,而是一个经常使用的实用方法,在50 -- 60年代,这个词也就有它特有的含义,现在已不多用.电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件.例如电子管的栅极相对于阴极往往要求 加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交 流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容.后来也有的资料把它引申使用于类似情况.

分析评测贴片电容性能的常用方法

首先是贴片电容的四个常规电性能,即容量Cap. 损耗DF,绝缘电阻IR和耐电压DBV,一般地,X7R产品的损耗值DF<=2.5%,越小越好,IR*Cap>500欧*法,BDV>2.5Ur.其次是贴片电容的加速寿命性能,在125deg.c环境温度和2.5Ur直流负载条件下,芯片应能耐100小时不击穿,质量好的可耐1000小时不击穿.再次就是产品的耐热冲击性能,将电容浸入300deg.c锡炉10秒,多做几粒,显微镜下观察是否有表面裂纹,然后可测试容量损耗并与热冲击前对比判别芯片是否内部裂纹.

整流滤波时电容和电感大小型号的选择

纸介电容 用两片金属箔做电极,夹在极薄的电容纸中,卷成圆柱形或者扁柱形芯子,然后密封在金属壳或者绝缘材料(如火漆.陶瓷.玻璃釉等)壳中制成.它的特点是体积较小,容量可以做得较大.但是有固有电感和损耗都比较大,用于低频比较合适. 云母电容 用金属箔或者在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成.它的特点是介质损耗小,绝缘电阻大.温度系数小,适宜用于高频电路. 陶瓷电容 用陶瓷做介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做极板制成.它的特点是体积小

总结:电路及电路设计经验技巧

电路及电路设计经验技巧大合集,全部是文档文件,来看看有没有你需要的资料?,把好几个压缩包的文件名称给copy下来了,压缩得有点大,文件都放在闯客网技术论坛上了,需要哪个资料的,自行下载吧,同时献上我们的交流群:813238832资料链接:https://bbs.usoftchina.com/thread-206874-1-1.html 文件列表:BUCKBOOST电路原理分析.docxCAN总线接口电路设计注意事项.docxDC-DC升压电路.docxFPGACPLD数字电路设计经验分享.doc

电容器的8个典型应用电路

http://murata.eetrend.com/article/2019-08/1002998.html 电容器的8个典型应用电路,值得一看   电容复位电路 图5-31所示为电容复位电路,A1是CPU集成电路,A1的①引脚是集成电路A1的复位引脚,复位引脚一般用RESET表示,①引脚内部电路和外部电路中元器件构成复位电路,C1是复位电容,S1是手动复位开关.集成电路A1的①引脚内电路有一个施密特触发器和一只上拉电阻R1,R1端接直流电压,另一端通过A1的①引脚与外部电路中的电容C1相连.

电容降压

基本原理:        电容降压主要是用在直流稳压电源电路里.直流稳压电源电路的大致结构是: 市电——变压(降压)——整流——滤波——稳压——直流输出 变压,主要是降压,一般使用变压器来完成.但是变压器体积较大,成本也较高,如果电路简单,例如声光控制开关,那么加一个变压器就显得大材小用.这个时候用一个电容,就可以解决降压的问题,简化电路,节约成本.基本电路如图 市电经过C1降压后到D2,D2完成半波整流,C2对整流后的脉动直流滤波,D3稳压,输出稳定的直流电压给负载.R1是电源关闭后C1的电荷

贴片电容耐压

贴片电容在电路中能够长期稳定.可靠工作,所承受的最大直流电压,又称贴片电容耐压.对于结构.介质.容量相同的器件,耐压越高,体积越大. 额定电压小于50V称为常规电压.标称额定电压大于100V的产品定义为中高压贴片电容器.中高压贴片电容器采用先进介质材料匹配贵金属电极浆,通过独特的内部结构设计.严格的过程控制和100%的耐电压分选,产品具有击穿电压高.一致性好和可靠性高等特点,广泛应用于模拟或数字调制解调器.局域网 / 广域网接口.电子镇流器.倍压电源.交直流变送器.背光源驱动器及高频大功率电路中