洛谷 P2401 不等数列

其实有两种方法来解这道题

第一种:找规律(非正经

一看,这玩意像是个杨辉三角,还左右对称呢

因为新插入一个数$n$,有$n+1$个位置可以选,所以总数就乘$n+1$,对应的$f[n+1][i]$也就等于$f[n][i]$了大概。可是一看,不大对,好像不是这样。那么就像,反正加一个数要么没变,要么加一个小于号,那么不在$f[n+1][i]$的一定是分到了$f[n+1][i+1]$里去了。那么以$n=3$时为例,$f[3][1]4=4,f[4][1]=1$也就是接收了$1$倍的$f[3][1]$。那么就有$3$个分到$f[4][2]$里去了。$f[3][2]4=16,f[4][2]=11$,而$f[4][2]$已经有$3$个,那么就接收了来自$f[4][2]$的$8$个,也就是$2$倍的$f[3][2]$。······以此类推,大概就得出了$f[n+1][i]+=f[n][i](i+1),f[n+1][i+1]+=f[n][i](n-i)$的规律

-----------------------------------------------手动分割线------------------------------------------------

第二种:数学方法推

这是正经方法

前面说过,加入一个数$n$,有$n$+$1$个位置可以选,可以插在两旁或者不等号的位置,因为新插入的数一定是最大的,所以插在最左边多一个大于号,而插在最右边多一个小于号。

那么问题来了,如果插在不等号的位置呢?

首先,明确一下,插入在不等号位置后,一个不等号会变为两个不等号,由于新插入的数一定是最大的,所以这两个不等号中前面的一定是小于号,后面的一定是大于号。那么就很明显了,如果这个位置原来是小于号,那么插入$n$之后,小于号数不变;如果原来是大于号,那么插入$n$之后,小于号数+$1$。那么原本有$i$个数$j$个小于号,加上一个数后便会有$j+1$种小于号不变$i-j$种小于号$+1$的情况。

上代码

先是暴力版(通不过的,这是帮助我打出那张图的版本)

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=1005;
int f[maxn],n,ans[maxn];
bool s[maxn];
void dfs(int step){
    if(step>n){
        int sum=0;
        for(int i=1;i<n;i++)sum+=f[i]<f[i+1]?1:0;
        ans[sum]++;
        return;
    }
    for(int i=1;i<=n;i++)
        if(!s[i]){
            s[i]=1;
            f[step]=i;
            dfs(step+1);
            s[i]=0;
        }
}
int main(){
    scanf("%d",&n);
    dfs(1);
    for(int i=0;i<n;i++)printf("%d ",ans[i]);
}

然后上

正常版本

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn=1005;
int n,k,f[maxn][maxn];
int main(){
    //freopen("num.in","r",stdin);
    //freopen("num.out","w",stdout);
    scanf("%d%d",&n,&k);
    if(k>(n-1)/2)k=n-k-1;
    f[1][0]=1;
    for(int i=1;i<n;i++){
        for(int j=0;j<=(i-1)/2;j++){//由于它类似于杨辉三角,左右对称,所以只求左侧就好
            f[i+1][j]=(f[i+1][j]+f[i][j]*(j+1))%2015;
            f[i+1][j+1]=(f[i+1][j+1]+f[i][j]*(i-j))%2015;
        }
        if(i%2==0)f[i+1][i/2]=(f[i+1][i/2]*2)%2015;
    }
    printf("%d",f[n][k]);
    return 0;
}

不喜勿喷

请勿抄袭

原文地址:https://www.cnblogs.com/hanruyun/p/8585077.html

时间: 2024-11-13 15:56:16

洛谷 P2401 不等数列的相关文章

动态规划 洛谷P2401 不等数列

P2401 不等数列 题目描述 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入">"和"<".问在所有排列中,有多少个排列恰好有k个"<".答案对2015取模. 注:1~n的排列指的是1~n这n个数各出现且仅出现一次的数列. 输入输出格式 输入格式: 第一行2个整数n,k. 输出格式: 一个整数表示答案. 输入输出样例 输入样例#1: 5 2 输出样例#1: 66 说明 对于30%的数据:n <= 10

洛谷 P2042 维护数列

http://blog.csdn.net/drazxlnddt/article/details/51051598 flip为true表示以当前节点为根的子树需要交换.set为true表示以当前节点为根的子树(包括自身)需要全部设为setv. 有个大坑:所谓和最大的子列最少有一个元素.有些操作可能对空的序列操作. 错误记录:所有注释掉的(多余的)和在之后加了//的语句(少的) 30和31行是为了更新子节点维护的各个值到正确的值(其他情况在split和merge中都是已经完成了更新,但如果字节点有s

斐波那契数列的通项公式x+洛谷P2626x

#include<cstdio> #include<iostream> #include<cmath> using namespace std; int main() { int n; scanf("%d",&n); n--; double q=sqrt(5.0); int ans; ans=((pow((1+q)/2.0,n)/q-(pow((1-q)/2.0,n)/n))); cout<<ans<<endl; re

洛谷P1182 数列分段Section II 二分答案

洛谷P1182 数列分段Section II 二分答案 题意:将 n 个 数 分为 m段 求一种方案,使这m段中最大的和 最小 额..可能有点拗口,其实就是说每一种方案,都有对应的 每段和的最大值,要求一种方案,使最大值最小 题解 :二分答案 mid为分成的最大值, 然后O(n) 判断 答案 是否可行 贪心的做下去,如果再加上就要超过了,那就新开一段 最后判断开的段数是否小于 m 1.注意要判断 如果当前这个值大于 mid,一个值就已经大于 mid了,那就直接退出了,否则 ,这个值也只会单独算为

洛谷1349 广义斐波那契数列 【矩阵乘法】

洛谷1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格式 输入格式: 输入包含一行6个整数.依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内. 输出格式: 输出包含一行一个整数,即an除以m的余数. 输入输出样例 输入样例#1: 1 1 1 1 10 7 输出样例#1: 6 说明

洛谷——P1062 数列

洛谷——P1062 数列 题目描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是: 1,3,4,9,10,12,13,… (该序列实际上就是:3^0,3^1,3^0+3^1,3^2,3^0+3^2,3^1+3^2,3^0+3^1+3^2,…) 请你求出这个序列的第N项的值(用10进制数表示). 例如,对于k=3,N=100,正确答案应该是981. 输入输出格式 输入格式: 输入文件只有1行,为2个正整数,用一个

洛谷P1471 方差

蒟蒻HansBug在一本数学书里面发现了一个神奇的数列,包含N个实数.他想算算这个数列的平均数和方差. ——by 洛谷; http://www.luogu.org/problem/show?pid=1471 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

洛谷P1519 穿越栅栏 Overfencing

P1519 穿越栅栏 Overfencing 69通过 275提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 USACO是100分,洛谷是20分 为什么只有十分 题目描述 描述 农夫John在外面的田野上搭建了一个巨大的用栅栏围成的迷宫.幸运的是,他在迷宫的边界上留出了两段栅栏作为迷宫的出口.更幸运的是,他所建造的迷宫是一个“完美的”迷宫:即你能从迷宫中的任意一点找到一条走出迷宫的路.给定迷宫的宽度W(1<=W<=38)及高度H(1<=H&

洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions

P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题解 最新讨论• 这道题有问题• 怎么进一步优化时间效率啊 …题目描述一个等差数列是一个能表示成a, a+b, a+2b,..., a+nb (n=0,1,2,3,...)的数列.在这个问题中a是一个非负的整数,b是正整数.写一个程序来找出在双平方数集合(双平方数集合是所有能表示成p的平方 + q的平