java数据结构:单链表常见操作代码实现

一、概述:

  本文主要总结单链表常见操作的实现,包括链表结点添加、删除;链表正向遍历和反向遍历、链表排序、判断链表是否有环、是否相交、获取某一结点等。

二、概念:

链表:

  一种重要的数据结构,HashMap等集合的底层结构都是链表结构。链表以结点作为存储单元,这些存储单元可以是不连续的。每个结点由两部分组成:存储的数值+前序结点和后序结点的指针。即有前序结点的指针又有后序结点的指针的链表称为双向链表,只包含后续指针的链表为单链表,本文总结的均为单链表的操作。

单链表结构:

Java中单链表采用Node实体类类标识,其中data为存储的数据,next为下一个节点的指针:

package com.algorithm.link;
/**
 * 链表结点的实体类
 * @author bjh
 *
 */
public class Node {
    Node next = null;//下一个结点
    int data;//结点数据
    public Node(int data){
        this.data = data;
    }
}

三、链表常见操作:

package com.algorithm.link;

import java.util.Hashtable;
/**
 * 单链表常见算法
 * @author bjh
 *
 */
public class MyLinkedList {

    /**链表的头结点*/
    Node head = null;

    /**
     * 链表添加结点:
     * 找到链表的末尾结点,把新添加的数据作为末尾结点的后续结点
     * @param data
     */
    public void addNode(int data){
        Node newNode = new Node(data);
        if(head == null){
            head = newNode;
            return;
        }
        Node temp = head;
        while(temp.next != null){
            temp = temp.next;
        }
        temp.next = newNode;
    }

    /**
     * 链表删除结点:
     * 把要删除结点的前结点指向要删除结点的后结点,即直接跳过待删除结点
     * @param index
     * @return
     */
    public boolean deleteNode(int index){
        if(index<1 || index>length()){//待删除结点不存在
            return false;
        }
        if(index == 1){//删除头结点
            head = head.next;
            return true;
        }
        Node preNode = head;
        Node curNode = preNode.next;
        int i = 1;
        while(curNode != null){
            if(i==index){//寻找到待删除结点
                preNode.next = curNode.next;//待删除结点的前结点指向待删除结点的后结点
                return true;
            }
            //当先结点和前结点同时向后移
            preNode = preNode.next;
            curNode = curNode.next;
            i++;
        }
        return true;
    }

    /**
     * 求链表的长度
     * @return
     */
    public int length(){
        int length = 0;
        Node curNode = head;
        while(curNode != null){
            length++;
            curNode = curNode.next;
        }
        return length;
    }

    /**
     * 链表结点排序,并返回排序后的头结点:
     * 选择排序算法,即每次都选出未排序结点中最小的结点,与第一个未排序结点交换
     * @return
     */
    public Node linkSort(){
        Node curNode = head;
        while(curNode != null){
            Node nextNode = curNode.next;
            while(nextNode != null){
                if(curNode.data > nextNode.data){
                    int temp = curNode.data;
                    curNode.data = nextNode.data;
                    nextNode.data = temp;
                }
                nextNode = nextNode.next;
            }
            curNode = curNode.next;
        }
        return head;
    }

    /**
     * 打印结点
     */
    public void printLink(){
        Node curNode = head;
        while(curNode !=null){
            System.out.print(curNode.data+" ");
            curNode = curNode.next;
        }
        System.out.println();
    }

    /**
     * 去掉重复元素:
     * 需要额外的存储空间hashtable,调用hashtable.containsKey()来判断重复结点
     */
    public void distinctLink(){
        Node temp = head;
        Node pre = null;
        Hashtable<Integer, Integer> hb = new Hashtable<Integer, Integer>();
        while(temp != null){
            if(hb.containsKey(temp.data)){//如果hashtable中已存在该结点,则跳过该结点
                pre.next = temp.next;
            }else{//如果hashtable中不存在该结点,将结点存到hashtable中
                hb.put(temp.data, 1);
                pre=temp;
            }
            temp = temp.next;
        }
    }

    /**
     * 返回倒数第k个结点,
     * 两个指针,第一个指针向前移动k-1次,之后两个指针共同前进,
     * 当前面的指针到达末尾时,后面的指针所在的位置就是倒数第k个位置
     * @param k
     * @return
     */
    public Node findReverNode(int k){
        if(k<1 || k>length()){//第k个结点不存在
            return null;
        }
        Node first = head;
        Node second = head;
        for(int i=0; i<k-1; i++){//前移k-1步
            first = first.next;
        }
        while(first.next != null){
            first = first.next;
            second = second.next;
        }
        return second;
    }

    /**
     * 查找正数第k个元素
     */
    public Node findNode(int k){
        if(k<1 || k>length()){//不合法的k
            return null;
        }
        Node temp = head;
        for(int i = 0; i<k-1; i++){
            temp = temp.next;
        }
        return temp;
    }

    /**
     * 反转链表,在反转指针钱一定要保存下个结点的指针
     */
    public void reserveLink(){
        Node curNode = head;//头结点
        Node preNode = null;//前一个结点
        while(curNode != null){
            Node nextNode = curNode.next;//保留下一个结点
            curNode.next = preNode;//指针反转
            preNode = curNode;//前结点后移
            curNode = nextNode;//当前结点后移
        }
        head = preNode;
    }

    /**
     * 反向输出链表,三种方式:
     * 方法一、先反转链表,再输出链表,需要链表遍历两次
     * 方法二、把链表中的数字放入栈中再输出,需要维护额外的栈空间
     * 方法三、依据方法2中栈的思想,通过递归来实现,递归起始就是将先执行的数据压入栈中,再一次出栈
     */
    public void reservePrt(Node node){
        if(node != null){
            reservePrt(node.next);
            System.out.print(node.data+" ");
        }
    }

    /**
     * 寻找单链表的中间结点:
     * 方法一、先求出链表的长度,再遍历1/2链表长度,寻找出链表的中间结点
     * 方法二、:
     * 用两个指针遍历链表,一个快指针、一个慢指针,
     * 快指针每次向前移动2个结点,慢指针一次向前移动一个结点,
     * 当快指针移动到链表的末尾,慢指针所在的位置即为中间结点所在的位置
     */
    public Node findMiddleNode(){
        Node slowPoint = head;
        Node quickPoint = head;
        //quickPoint.next == null是链表结点个数为奇数时,快指针已经走到最后了
        //quickPoint.next.next == null是链表结点数为偶数时,快指针已经走到倒数第二个结点了
        //链表结点个数为奇数时,返回的是中间结点;链表结点个数为偶数时,返回的是中间两个结点中的前一个
        while(quickPoint.next != null && quickPoint.next.next != null){
            slowPoint = slowPoint.next;
            quickPoint = quickPoint.next.next;
        }
        return slowPoint;
    }

    /**
     * 判断链表是否有环:
     * 设置快指针和慢指针,慢指针每次走一步,快指针每次走两步
     * 当快指针与慢指针相等时,就说明该链表有环
     */
    public boolean isRinged(){
        if(head == null){
            return false;
        }
        Node slow = head;
        Node fast = head;
        while(fast.next != null && fast.next.next != null){
            slow = slow.next;
            fast = fast.next.next;
            if(fast == slow){
                return true;
            }
        }
        return false;
    }

    /**
     * 返回链表的最后一个结点
     */
    public Node getLastNode(){
        Node temp = head;
        while(temp.next != null){
            temp = temp.next;
        }
        return temp;
    }

    /**
     * 在不知道头结点的情况下删除指定结点:
     * 删除结点的重点在于找出其前结点,使其前结点的指针指向其后结点,即跳过待删除结点
     * 1、如果待删除的结点是尾结点,由于单链表不知道其前结点,没有办法删除
     * 2、如果删除的结点不是尾结点,则将其该结点的值与下一结点交换,然后该结点的指针指向下一结点的后续结点
     */
    public boolean deleteSpecialNode(Node n){
        if(n.next == null){
            return false;
        }else{
            //交换结点和其后续结点中的数据
            int temp = n.data;
            n.data = n.next.data;
            n.next.data = temp;
            //删除后续结点
            n.next = n.next.next;
            return true;
        }
    }

    /**
     * 判断两个链表是否相交:
     * 两个链表相交,则它们的尾结点一定相同,比较两个链表的尾结点是否相同即可
     */
    public boolean isCross(Node head1, Node head2){
        Node temp1 = head1;
        Node temp2 = head2;
        while(temp1.next != null){
            temp1 = temp1.next;
        }
        while(temp2.next != null){
            temp2 = temp2.next;
        }
        if(temp1 == temp2){
            return true;
        }
        return false;
    }

    /**
     * 如果链表相交,求链表相交的起始点:
     * 1、首先判断链表是否相交,如果两个链表不相交,则求相交起点没有意义
     * 2、求出两个链表长度之差:len=length1-length2
     * 3、让较长的链表先走len步
     * 4、然后两个链表同步向前移动,没移动一次就比较它们的结点是否相等,第一个相等的结点即为它们的第一个相交点
     */
    public Node findFirstCrossPoint(MyLinkedList linkedList1, MyLinkedList linkedList2){
        //链表不相交
        if(!isCross(linkedList1.head,linkedList2.head)){
            return null;
        }else{
            int length1 = linkedList1.length();//链表1的长度
            int length2 = linkedList2.length();//链表2的长度
            Node temp1 = linkedList1.head;//链表1的头结点
            Node temp2 = linkedList2.head;//链表2的头结点
            int len = length1 - length2;//链表1和链表2的长度差

            if(len > 0){//链表1比链表2长,链表1先前移len步
                for(int i=0; i<len; i++){
                    temp1 = temp1.next;
                }
            }else{//链表2比链表1长,链表2先前移len步
                for(int i=0; i<len; i++){
                    temp2 = temp2.next;
                }
            }
            //链表1和链表2同时前移,直到找到链表1和链表2相交的结点
            while(temp1 != temp2){
                temp1 = temp1.next;
                temp2 = temp2.next;
            }
            return temp1;
        }
    }

}

四、测试类:

package com.algorithm.link;
/**
 * 单链表操作测试类
 * @author bjh
 *
 */
public class Test {

    public static void main(String[] args){
        MyLinkedList myLinkedList = new MyLinkedList();
        //添加链表结点
        myLinkedList.addNode(9);
        myLinkedList.addNode(8);
        myLinkedList.addNode(6);
        myLinkedList.addNode(3);
        myLinkedList.addNode(5);

        //打印链表
        myLinkedList.printLink();

        /*//测试链表结点个数
        System.out.println("链表结点个数为:" + myLinkedList.length());

        //链表排序
        Node head = myLinkedList.linkSort();
        System.out.println("排序后的头结点为:" + head.data);
        myLinkedList.printLink();

        //去除重复结点
        myLinkedList.distinctLink();
        myLinkedList.printLink();

        //链表反转
        myLinkedList.reserveLink();
        myLinkedList.printLink();

        //倒序输出/遍历链表
        myLinkedList.reservePrt(myLinkedList.head);

        //返回链表的中间结点
        Node middleNode = myLinkedList.findMiddleNode();
        System.out.println("中间结点的数值为:"+middleNode.data);

        //判断链表是否有环
        boolean isRinged = myLinkedList.isRinged();
        System.out.println("链表是否有环:" + isRinged);
        //将链表的最后一个结点指向头结点,制造有环的效果
        Node lastNode = myLinkedList.getLastNode();
        lastNode.next = myLinkedList.head;
        isRinged = myLinkedList.isRinged();
        System.out.println("链表是否有环:" + isRinged);

        //删除指定结点
        Node nk = myLinkedList.findReverNode(3);
        System.out.println(nk.data);
        myLinkedList.deleteSpecialNode(nk);
        myLinkedList.printLink();

        //链表是否相交
        //新链表
        MyLinkedList myLinkedList1 = new MyLinkedList();
        myLinkedList1.addNode(1);
        myLinkedList1.addNode(2);
        myLinkedList1.printLink();
        System.out.println("链表一和链表二是否相交"+myLinkedList.isCross(myLinkedList.head, myLinkedList1.head));
        //把第二个链表从第三个结点开始接在第二个链表的后面,制造相交的效果
        myLinkedList1.findNode(2).next = myLinkedList.findNode(3);
        myLinkedList1.printLink();
        System.out.println("链表一和链表二是否相交"+myLinkedList.isCross(myLinkedList.head, myLinkedList1.head));
        */

        //如果两个链表相交求链表相交的结点的值
        MyLinkedList myLinkedList1 = new MyLinkedList();
        myLinkedList1.addNode(1);
        myLinkedList1.addNode(2);
        myLinkedList1.findNode(2).next = myLinkedList.findNode(3);
        myLinkedList1.printLink();
        Node n = myLinkedList1.findFirstCrossPoint(myLinkedList, myLinkedList1);
        if(n == null){
            System.out.println("链表不相交");
        }else{
            System.out.println("两个链表相交,第一个交点的数值为:" + n.data);
        }
    }
}

原文地址:https://www.cnblogs.com/bjh1117/p/8335108.html

时间: 2024-07-29 21:40:31

java数据结构:单链表常见操作代码实现的相关文章

Java数据结构——单链表

一.单链表的概念 单链表是一种链式存取的数据结构,用一组地址任意的存储单元存放线性表中的数据元素.这组存储单元可以是连续的,也可以是不连续的. 存储单元由两部分组成,数据源和指针,数据源放数据,指针指向下个存储单元. 二.单链表的结构 采用Node实体类类标识,其中data为存储的数据,next为下一个结点的指针. //链表的实体类 class Node{ public int data; public Node next; public Node(int data) { this.data =

数据结构——单链表及其操作

1 #include<iostream> 2 #include<string> 3 #include<stdlib.h> 4 5 using namespace std; 6 7 typedef int ElemType; 8 typedef int Status; 9 #define OK 1 10 #define ERROR 0 11 12 13 //单链表的存储结构 14 typedef struct LNode 15 { 16 ElemType data; //

java实现二叉树的常见操作

本文转自:红客联盟 解释:程序调用自身的编程技巧叫做递归. 程序调用自身的编程技巧称为递归( recursion).递归做为一种算法在程序设计语言中广泛应用. 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量.递归的能力在于用有限的语句来定义对象的无限集合. 递归的三个条件: 边界条件 递归前进段 递归返回段 当边界条件不

JAVA 实现单链表

1 public class LinkNode { 2 public String data; 3 public LinkNode next; 4 5 LinkNode(){ 6 this.data = "a"; 7 this.next = null; 8 } 9 10 LinkNode(String string){ 11 this.data = string; 12 this.next = null; 13 } 14 } 1 public class LinkList { 2 3

数据结构——单链表

1.对于一个有数据的单链表,如果要对其初始化,使用下列操作: 1 void initList(sqlist &L){ #对于需要改变的变量或链表,使用引用型 2 L.length==0; 3 } //单链表长度重置为0 2.单链表有4中操作:归并,插入,删除,查找 归并的实现:(链表A,B是有序的,且归并后的C也是有序的)如下: 1 void merge(LNode *A,LNode *B,LNode *&C){ //将A B两个链表归并为一个新的单链表(链表C采用引用型) 2 LNode

数据结构之链表单向操作总结

链表是数据结构的基础内容之一,下面就链表操作中的创建链表.打印链表.求取链表长度.判断链表是否为空.查找结点.插入结点.删除结点.逆转链表.连接链表.链表结点排序等进行总结. 1.创建表示结点的类,因为链表操作中需要比较结点,因此结点需要实现comparable接口. public class Node implements Comparable<Node> { private Object data; private Node next; //构造函数 public Node() { thi

java实现单链表

前面已经介绍了java如何实现顺序链表:http://www.cnblogs.com/lixiaolun/p/4643664.html 接下来,我们开始学习java实现单链表. 单链表类 package linklist; public class LinkList { class Element { public Object value=null; private Element next=null; } private Element header = null;//头结点 /** * 初

java 实现单链表的逆序

</pre><pre name="code" class="java">package com.ckw.mianshi; /** * java 实现单链表的逆序 * @author Administrator * */ public class SingleLinkedReverse { class Node{ int data; Node next; public Node(int data){ this.data = data; } }

Java 实现单链表反序

//单链表反序 public class SingleLinkedListReverse { public static void main(String[] args) { Node head = new Node(0); Node temp = null; Node cur = null; for (int i = 1; i <= 10; i++) { temp = new Node(i); if (i == 1) { head.setNext(temp); } else { cur.set