爬取百合网的数据链接:http://www.cnblogs.com/YuWeiXiF/p/8439552.html
总共爬了22779条数据。第一次接触matplotlib库,以下代码参考了matplotlib官方文档:https://matplotlib.org/users/index.html。
数据查询用到了两个方法:getSexNumber(@sex varchar(2),@income varchar(30))、gethousingNumber(@sex varchar(2),@housing varchar(6))来简化查询语句的长度,代码如下:
1 go 2 create function getSexNumber(@sex varchar(2),@income varchar(30)) 3 returns int 4 as 5 begin 6 return(select count(id) from users where sex = @sex and income = @income) 7 end 8 go 9 go 10 create function gethousingNumber(@sex varchar(2),@housing varchar(6)) 11 returns int 12 as 13 begin 14 return(select count(id) from users where sex = @sex and housing = @housing) 15 end 16 go
以下代码为SQL Server 数据库操作:
1 #__author: "YuWei" 2 #__date: 2018/2/11 3 import numpy as np 4 import matplotlib.pyplot as plt 5 import pymssql 6 7 def db(sql): 8 """ 9 数据库相关操作 10 11 :param sql: sql语句 12 :return: 查询的结果集,list封装 13 """ 14 conn = pymssql.connect(host=‘localhost‘, user=‘sa‘, password=‘123456c‘, database=‘Baihe‘, charset="utf8") 15 cur = conn.cursor() 16 cur.execute(sql) 17 row = cur.fetchone() # 指向结果集的第一行, 18 data = [] # 返回的list 19 while row: 20 rows = list(row) 21 for i in range(len(rows)): # 针对rows的每项编码 22 try: 23 rows[i] = rows[i].encode(‘latin-1‘).decode(‘gbk‘) 24 except AttributeError:pass 25 data.append(rows) # 向data加数据 26 row = cur.fetchone() # 27 print(data) 28 cur.close() 29 conn.close() 30 return data
生成各工资段人数占总人数比图:
1 def builder_income_ratio(): 2 """ 3 生成各工资段人数占总人数比图 4 5 :return: 无 6 """ 7 data_list = db("select income,count(id) from users group by income") 8 income_data_list = [] # 数据 9 income_labels_list = [] # 图例 10 for data in data_list: 11 income_data_list.append(data[1]) 12 income_labels_list.append(data[0]) 13 income_data_list.remove(income_data_list[6]) # 删掉不要的数据 14 income_labels_list.remove(income_labels_list[6]) # 删掉不要的数据 15 # 画饼图 16 plt.pie(income_data_list,labels=income_labels_list,colors=[‘c‘,‘m‘,‘r‘,‘g‘],startangle=30, 17 shadow=True,explode=(0, 0, 0.1, 0, 0, 0, 0.1, 0, 0.1, 0, 0, 0),autopct=‘%.1f%%‘) 18 plt.title(‘各工资段人数占总人数比‘) # 标题 19 plt.show() # 显示
执行效果如下:
生成各工资段男,女人数图:
1 def builder_sex_ratio(): 2 """ 3 生成各工资段男,女人数图 4 5 :return: 无 6 """ 7 data_list = db("select income,dbo.getSexNumber(‘男‘,income) as 男 ,dbo.getSexNumber(‘女‘,income) as 女 " 8 "from users group by income") 9 men = [] # 男 10 women = [] # 女 11 labels =[] # 图例 12 for data in data_list: 13 labels.append(data[0]) 14 men.append(data[1]) 15 women.append(data[2]) 16 men.remove(men[6]) # 删掉不要的数据 17 women.remove(women[6]) # 删掉不要的数据 18 labels.remove(labels[6]) # 删掉不要的数据 19 max_line = 12 # 12个 20 fig,ax = plt.subplots() 21 line = np.arange(max_line) # [0,1,2,3,4,5,6,7,8,9,10,11] 22 bar_width = 0.4 # 条形之间的宽度 23 # 画条形图 24 ax.bar(line, men, bar_width,alpha=0.3, color=‘b‘,label=‘男‘) 25 ax.bar(line+bar_width, women, bar_width,alpha=0.3, color=‘r‘,label=‘女‘) 26 ax.set_xlabel(‘工资段‘) 27 ax.set_ylabel(‘人数‘) 28 ax.set_title(‘各工资段男,女人数图‘) 29 ax.set_xticks(line + bar_width / 2) # 保证条形居中 30 ax.set_xticklabels(labels) 31 # 画两条线 32 plt.plot([0.04, 1.04, 2.04, 3.04, 4.04, 5.04, 6.04, 7.04, 8.04, 9.04, 10.04, 11.04], men, label=‘男‘) 33 plt.plot([0.4, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4, 9.4, 10.4, 11.4], women, label=‘女‘) 34 ax.legend() 35 fig.tight_layout() 36 # fig.savefig("1.png") # 生成图片 37 plt.show()
执行效果如下:
生成男,女平均身高图:
1 def builder_age_ratio(): 2 """ 3 生成男,女平均身高图 4 5 :return: 6 """ 7 data_list = db("select sex,avg(height) as 平均升高 from users group by sex") 8 sex = [] # 性别 9 number = [] # 人数 10 for data in data_list: 11 sex.append(data[0]) 12 number.append(data[1]) 13 # 画条形图 14 plt.bar(sex[0], number[0], label="男", color=‘g‘,width=0.03) 15 plt.bar(sex[1], number[1], label="女", color=‘r‘,width=0.03) 16 plt.legend() 17 plt.xlabel(‘性别‘) 18 plt.ylabel(‘身高‘) 19 plt.title(‘男女平均身高图‘) 20 plt.show()
执行效果如下:
生成有房与无房的人数比例图:
1 def builder_housing_sum_ratio(): 2 """ 3 生成有房与无房的人数比例图 4 5 :return: 6 """ 7 data_list = db("select housing,count(id) from users group by housing") 8 housing_data_list = [] 9 housing_labels_list = [] 10 for data in data_list: 11 housing_data_list.append(data[1]) 12 housing_labels_list.append(data[0]) 13 # 画饼图 14 plt.pie(housing_data_list, labels=housing_labels_list, colors=[‘g‘, ‘r‘], startangle=30, 15 shadow=True, explode=(0, 0), autopct=‘%.0f%%‘) 16 plt.title(‘有房与无房的人数比例图‘) 17 plt.show()
执行效果如下:
生成有无房男女人数图:
1 def builder_housing_ratio(): 2 """ 3 生成有无房男女人数图 4 5 :return: 6 """ 7 data_list = db("select dbo.gethousing(‘女‘,housing),dbo.gethousing(‘男‘,housing) from users group by housing") 8 homey = [] # 有房 9 homem = [] # 无房 10 for data in data_list: 11 homey.append(data[0]) 12 homem.append(data[1]) 13 max_line = 2 # 两个 14 fig, ax = plt.subplots() 15 line = np.arange(max_line) # [0,1] 16 bar_width = 0.1 # 条形之间的宽度 17 # 画条形 18 ax.bar(line,homey , bar_width, alpha=0.3,color=‘b‘,label=‘女‘) 19 ax.bar(line+bar_width, homem, bar_width,alpha=0.3,color=‘r‘,label=‘男‘) 20 ax.set_xlabel(‘有无房‘) 21 ax.set_ylabel(‘人数‘) 22 ax.set_title(‘有无房男女人数图‘) 23 ax.set_xticks(line + bar_width / 2) # 保持居中 24 ax.set_xticklabels([‘有房‘,‘无房‘]) 25 ax.legend() 26 fig.tight_layout() 27 plt.show()
执行效果如下:
原文地址:https://www.cnblogs.com/YuWeiXiF/p/8445749.html
时间: 2024-12-19 10:22:36