POJ 1564 Sum It Up (DFS+剪枝)



Sum It Up

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5820   Accepted: 2970

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that
equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the
input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear
in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of‘, the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE‘. The numbers within each sum must appear in nonincreasing order.
A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums
with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

Source

Mid-Central USA 1997

思路:由于数量少,可以暴力搜索解决。DFS。值得注意的地方是去重,我用的是和上一递归pre比较,如果相同则减枝。

#include<iostream>
#include<cstdio>

using namespace std;

int num[15],ans[15];
int flag,t,n;

void dfs(int now,int sum,int cur)
{
    if(sum==0)
    {
        flag=1;
        printf("%d",ans[0]);
        for(int i=1;i<cur;i++)
        {
            printf("+%d",ans[i]);
        }
        printf("\n");
        return;
    }
    else
    {
        int pre=-1;
        for(int i=now;i<n;i++)
        {
            if(sum>=num[i]&&num[i]!=pre)
            {
                pre=num[i];                       //此处与上一次递归的num[i],即pre,作比较。
                ans[cur]=num[i];
                dfs(i+1,sum-num[i],cur+1);
            }
        }
    }
}

int main()
{
    while(scanf("%d%d",&t,&n),n&&t)
    {
        flag=0;
        printf("Sums of %d:\n",t);
        for(int i=0;i<n;i++)
            scanf("%d",num+i);
        dfs(0,t,0);

        if(!flag)
            printf("NONE\n");
    }

    return 0;

}

不知道,我理解得,对不对。每条递归路线互不影响。即一个数组ans[15],并没有什么值得覆盖问题。

POJ 1564 Sum It Up (DFS+剪枝),布布扣,bubuko.com

时间: 2024-10-08 16:54:12

POJ 1564 Sum It Up (DFS+剪枝)的相关文章

poj 1564 Sum It Up (DFS+ 去重+排序)

http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i]和上一个数相同,那么记录数组的同一个位置就没有必要再放入这个数.例如:4 3 3 2构成和是7,b数组的第二个位置放了3,则后面的那个3就没有必要再放入记录数组的第二个位置了.(可能会放到后面的位置)... #include<stdio.h> #include<string.h> #i

poj 1564 Sum It Up 搜索

题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过map来实现:map<string,int>把字符串(可以是C语言的字符串)和整数联系起来了.我们可以把相加起来的几个数变成一个字符串(2+1+1,变成“211”),如果它出现过,就标记为1,初始值是0.出现过的就不再输出了. 剪枝: 1.所有的数加起来的和小于T,直接输出NONE. 2.搜索过程中,

POJ 1564 Sum It Up(DFS)

Sum It Up Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Description Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if

poj 1564 Sum It Up【dfs+去重】

Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Accepted: 3475 Description Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n

poj 1564 Sum It Up

Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7191   Accepted: 3745 Description Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n

【POJ - 1190】生日蛋糕 (dfs+剪枝)

-->生日蛋糕  Descriptions: 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱.当i < M时,要求Ri > Ri+1且Hi > Hi+1. 由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小. 令Q = Sπ 请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),

POJ 1564 经典dfs

1.POJ 1564 Sum It Up 2.总结: 题意:在n个数里输出所有相加为t的情况. #include<iostream> #include<cstring> #include<cmath> #include<queue> #include<algorithm> #include<cstdio> #define F(i,a,b) for (int i=a;i<=b;i++) #define mes(a,b) memse

poj 1699 Best Sequence (搜索技巧 剪枝 dfs)

题目链接 题意:给出几个基因片段,要求你将它们排列成一个最短的序列,序列中使用了所有的基因片段,而且不能翻转基因. 分析:先计算出add数组,再dfs枚举. 1 #include <iostream> 2 #include <cstring> 3 #include <cstdlib> 4 #include <cmath> 5 #include <cstdio> 6 #include <vector> 7 #include <al

POJ - 1011 - Sticks (DFS + 剪枝)

题目传送:Sticks 思路:DFS + 剪枝 AC代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <vector> #include <map> #include