引述之类的就免了,我们现在做题碰到的并查集基础题目大都是连通城市(或者村庄学校),接下来我们就称每一个城市为一个元素。我们解决此类题目运用的是树结构,每个集合用一棵树表示,而树的节点用于存储集合中的元素名。举个实例:有A,B,C,D这4个城市,我们用树结构连通的形式如下:
A
|
B
|
C
|
D
在这个树结构里面,A是根节点即没有父节点的节点,A是B的父节点,B是C的父节点,C是D的父节点,而且对于连通4个城市A,B,C,D的树结构来说它有且只有一个根节点(这也是判断城市是否全部连通的重要依据)。
并查集中有一个很重要的数组set[ ],我们用它来储存当前元素的父节点,像上述例子我们可以这样表示set[B]=A,set[C]=B,set[D]=C。代表什么就不多说了,这个set[ ]要记在心里,后面要用到,当然在此之前我们要初始化set[ i ] = i,即set[A]=A,set[B]=B,set[C]=C=,set[D]=D 最后一步会用到!!。
并查集有二个要点:
(一)查:查找根节点(首先我们要知道若城市(我们还称其为元素)全部连通,总会有find(任何元素)=唯一的元素即根节点 成立)
我们用find( )函数实现,这里就需要上面的set[ ]了。具体代码如下:
[cpp] view plaincopy
- int find(int parent)
- {
- while(parent!=set[parent])
- parent=set[parent];
- return parent;
- }
在这里我们通过find( )函数便可以得到如下的运行:
元素A B C D
find(A)=A;find(B)=A;find(C)=B;find(D)=C;
结束 find(A)=A;find(B)=A;find(C)=B;
结束 find(A)=A;find(B)=A;
结束 find(A)=A;
我们会发现在这个过程中,除了A之外,其它的都会啰嗦一些,明白地说,若是元素很多,将会很耗时。怎么改进呢???为什么不能就4次结束呢?
这样不行吗?find(A)=A;find(B)=A——>find(A)=A;find(C)=B——>find(B)=A——>find(A)=A;find(D)=C——>find(C)=B——>find(B)=A——>find(A)=A。
当然可以,这就是路径压缩:每个元素只需一次就可以找到根节点 ,就像下面的树结构一样。
A
/ | \
B C D
代码实现:
[cpp] view plaincopy
- int find(int parent)
- {
- int child=parent;
- int t;
- while(parent!=set[parent])
- parent=set[parent];
- //这里面关于变量间转换较多,一定要理解,不理解也要记好
- //一直查找到child==parent
- while(child!=parent)//不是根节点
- {
- t=set[child];//把当前元素的父节点用t记录下来
- set[child]=parent;
- child=t;//把t赋值给当前元素
- }
- return parent;
- }
通过该过程,我们各需一次就可以得到下面运行:
A B C D
find(A)=A find(B)=A find(C)=A find(D)=A
(二)并:合并 这个过程中我们采用了merge来合并没有共同根节点的元素
首先我们已经知道若城市(我们还称其为元素)全部连通,总会有find(任何元素)=其中唯一的元素即根节点成立,相反的,若有两个元素x,y满足find(x)!=find(y)说明什么?当然是它们不在一棵树上(或者说它们中有一个城市还未连通),因为一棵树只有一个根节点不是吗?那么我们要怎么办?是啊,只需要把其中一个元素当作另一个元素的父节点就OK了。
代码实现:
[cpp] view plaincopy
- void merge(int x,int y)
- {
- int fx=find(x);
- int fy=find(y);
- if(fx!=fy)
- set[fx]=fy;
- }
好好回味一下,再向下看!!!
整体思路说完了:
到了最关键的一步,还是上面A,B,C,D4个城市,我们在开始的时候已经初始化过了set[ i ] = i ,而且我们知道了一棵树中只有一个根节点,那么通过什么办法判断A,B,C,D是否在一棵树上呢?或者说全部连通了呢?
若遍历A,B,C,D若set[ i ] = i 的次数超过一次说明什么?此时,我们就可以认为该元素和其他元素不在一棵树上;相反则说明全部连通!!!
转自http://blog.csdn.net/chenzhenyu123456/article/details/43371209
畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 34727 Accepted Submission(s): 18361
Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
#include<stdio.h> int set[1100]; int find(int father) //寻找根节点 { int child=father; int t; while(father!=set[father]) father=set[father]; while(child!=father) { t=set[child]; set[child]=father; child=t; } return father; } int mix(int a,int b) //合并已有道路 { int fx,fy; fx=find(a); fy=find(b); if(fx!=fy) set[fx]=fy; } int main() { int n,m,i,city,road; int s; //需要修建的道路 while(scanf("%d",&city)&&city!=0) { for(i=1;i<=city;i++) set[i]=i; scanf("%d",&road); for(i=1;i<=road;i++) { scanf("%d %d",&n,&m); mix(n,m);//合并已有道路 } s=0; for(i=1;i<=city;i++) { if(set[i]==i) s++; } printf("%d\n",s-1); } return 0; }