bzoj5093:图的价值(第二类斯特林数+NTT)

传送门

首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\]
即对于每个点\(i\),枚举它的度数,然后计算方案。因为有\(n\)个点,且关于某个点连边的时候剩下的边都可以随便连,所以有前面的两个常数

所以真正要计算的是\[\sum_{i=0}^{n-1}C_{n-1}^ii^k\]

根据第二类斯特林数的性质,有\[i^k=\sum_{j=0}^iS(k,j)\times j!\times C_i^j\]
然后带入,得\[\sum_{i=0}^{n-1}C_{n-1}^i\sum_{j=0}^iS(k,j)\times j!\times C_i^j\]
把\(j\)提到前面来\[\sum_{j=0}^{n-1}j!\times S(k,j)\sum_{i=j}^{n-1}C_{n-1}^iC_i^j\]
后面那个\(\sum_{i=j}^{n-1}C_{n-1}^iC_i^j\),可以理解为从\(n-1\)个数中选\(i\)个,再从这\(i\)个中选\(j\)个的方案数,等价于这\(j\)个必选,剩下的\(n-1-i\)个可选可不选,于是有\[\sum_{j=0}^{n-1}j!\times S(k,j)\times C_{n-1}^j\times 2^{n-j-1}\]
\[\sum_{j=0}^{n-1}S(k,j)\times \frac{(n-1)!}{(n-1-j)!}\times 2^{n-j-1}\]
然后因为第二类斯特林数的通项公式为\[S(n,m)=\frac{1}{m!}\sum_{k=0}^{m}(-1)^kC(m,k)(m-k)^n\]
\[S(n,m)=\sum_{k=0}^{m}\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}\]
于是第二类斯特林数也能表示成卷积的形式,对于\(S(k,j)\),当\(j>k\)时恒为\(0\),所以只要计算到\(k\)位置即可。预处理出第二类斯特林数,然后更新答案,复杂度为\(O(k\log k)\)

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
    R int res,f=1;R char ch;
    while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
    for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
    return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
    if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
    while(z[++Z]=x%10+48,x/=10);
    while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=6e5+5,P=998244353,Gi=332748118;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R ll y){
    R int res=1;
    for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
    return res;
}
int A[N],B[N],O[N],r[N],S[N],fac[N],inv[N];
int n,m,lim,l,k,ans;
void NTT(int *A,int ty){
    fp(i,0,lim-1)if(i<r[i])swap(A[i],A[r[i]]);
    for(R int mid=1;mid<lim;mid<<=1){
        R int I=(mid<<1),Wn=ksm(ty==1?3:Gi,(P-1)/I);O[0]=1;
        fp(i,1,mid-1)O[i]=mul(O[i-1],Wn);
        for(R int j=0;j<lim;j+=I)fp(k,0,mid-1){
            int x=A[j+k],y=mul(O[k],A[j+k+mid]);
            A[j+k]=add(x,y),A[j+k+mid]=dec(x,y);
        }
    }if(ty==-1)for(R int i=0,inv=ksm(lim,P-2);i<lim;++i)A[i]=mul(A[i],inv);
}
int main(){
//  freopen("testdata.in","r",stdin);
    n=read(),k=read();
    fac[0]=inv[0]=1;
    fp(i,1,k)fac[i]=mul(fac[i-1],i);
    inv[k]=ksm(fac[k],P-2);fd(i,k-1,1)inv[i]=mul(inv[i+1],i+1);
    fp(i,0,k){
        A[i]=i&1?P-inv[i]:inv[i];
        B[i]=mul(ksm(i,k),inv[i]);
    }lim=1;while(lim<=k+k)lim<<=1,++l;
    fp(i,0,lim-1)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
    NTT(A,1),NTT(B,1);
    fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
    NTT(A,-1);
    fp(i,0,k)S[i]=A[i];
    int inv2=ksm(2,P-2);
    for(R int i=0,j=ksm(2,n-1),p=1;i<=min(n-1,k);++i){
        ans=add(ans,1ll*S[i]*j%P*p%P);
        j=mul(j,inv2),p=mul(p,n-i-1);
    }
    ans=mul(ans,n),ans=mul(ans,ksm(2,1ll*(n-1)*(n-2)/2));
    printf("%d\n",ans);return 0;
}

原文地址:https://www.cnblogs.com/bztMinamoto/p/10211207.html

时间: 2024-08-30 13:16:54

bzoj5093:图的价值(第二类斯特林数+NTT)的相关文章

bzoj 5093 图的价值 —— 第二类斯特林数+NTT

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\limits_{d=0}^{n-1} d^{k} * 2^{C_{n-1}^{2}} * C_{n-1}^{d} \) 使用 \( n^{k} = \sum\limits_{i=0}^{k} S(k,i) * i! *C_{n}^{i} \) 得到 \( ans = n * \sum\limits_{d

BZOJ4555 [Tjoi2016&amp;Heoi2016]求和 【第二类斯特林数 + NTT】

题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ? S(i ? 1, j) + S(i ? 1, j ? 1), 1 <= j <= i ? 1. 边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i) 你能帮帮他吗? 输入格式 输入只有一个正整数 输出格式 输出f(n).由于结果会很大,输出f(n)对998244353(7

【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k·2^{\frac{n(n-1)}{2}}\] 因为有\(n\)个点,所以还要乘以一个\(n\) 所以,我们真正要求的就是: \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k\] 怎么做? 看到了\(i^k\)想到了第二类斯特林数 \[m^n=\sum_{i=0}^{m}

【bzoj5093】[Lydsy1711月赛]图的价值(NTT+第二类斯特林数)

题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{j=0}^{n-1}{n-1\choose j}2^{\frac{(n-1)(n-2)}{2}}j^k \] 表示分别考虑每个点的贡献,我们只需要枚举其度数即可,其余的边任意连. 然后我们将后面的\(j^k\)用第二类斯特林数展开: \[ \begin{aligned} &\sum_{i=1}^{n

bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数

[Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][Discuss] Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出. Input 第一行包含两个正整数n,k(

【cf961G】G. Partitions(组合意义+第二类斯特林数)

传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后询问所有划分的总价值. 思路: 直接枚举划分不好计算,考虑单独计算每一个元素的贡献,那么就有式子: \[ \sum_{i=1}^nw_i\sum_{j=1}^{n-k+1}{n-1\choose j-1}\begin{Bmatrix} n - j \\ k - 1 \end{Bmatrix}j \]

Gym 101147G 第二类斯特林数

大致题意: n个孩子,k场比赛,每个孩子至少参加一场比赛,且每场比赛只能由一个孩子参加.问有多少种分配方式. 分析: k>n,就无法分配了. k<=n.把n分成k堆的方案数乘以n的阶乘.N分成k堆得方案数即第二类斯特林数 http://blog.csdn.net/acdreamers/article/details/8521134 #include <bits/stdc++.h> using namespace std; typedef long long ll; const ll

Light OJ 1236 Race 第二类斯特林数

第二类斯特林数 n 匹马 分成1 2 3... n组 每一组就是相同排名 没有先后 然后组与组之间是有顺序的 在乘以组数的阶乘 #include <cstdio> #include <cstring> using namespace std; int dp[1010][1010]; int a[1010]; int main() { a[0] = 1; dp[0][0] = 1; for(int i = 1; i <= 1000; i++) { dp[i][0] = 0; d

swjtu oj Paint Box 第二类斯特林数

http://swjtuoj.cn/problem/2382/ 题目的难点在于,用k种颜色,去染n个盒子,并且一定要用完这k种颜色,并且相邻的格子不能有相同的颜色, 打了个表发现,这个数是s(n, k) * k! s(n, k)表示求第二类斯特林数. 那么关键是怎么快速求第二类斯特林数. 这里提供一种O(k)的算法. 第二类斯特林数: #include <cstdio> #include <cstdlib> #include <cstring> #include <