MaskLab-实例分割(使用语义分割和方向特征精细化目标检测)

MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features
  这是一篇2018年cvpr关于实例分割的网络模型,模型主要有三个输出:边界框、语义分割、方向预测。

整体框架

  整个模型使用ResNet-101作为特征提取器,构建于Faster-RCNN之上。使用Faster-RCNN检测到目标框之后,使用相应的类别选取对应的语义通道并裁剪,接着结合方向预测再通过1x1的卷积得到粗分割掩码。

语义和方向特征

  Masklab最核心的地方是使用了方向特征。目标检测和语义分割可以用于不同类别的实例分割,方向特征则用于同一类别的实例分割,如同一边框中重叠的人。方向预测对数用于预测每个像素相对于它对应的实例中心的方向,进而用于分割同样语义标签的实例。

掩码精细化

  这部分工作感觉就是锦上添花的东西。使用额外的几个卷积层组成的网络使用一种hypercolumn特征得到精细化的分割结果。

原文地址:https://www.cnblogs.com/majiale/p/10209553.html

时间: 2024-10-09 16:22:58

MaskLab-实例分割(使用语义分割和方向特征精细化目标检测)的相关文章

分类、目标检测、语义分割、实例分割的区别

计算机视觉的任务很多,有图像分类.目标检测.语义分割.实例分割和全景分割等,那它们的区别是什么呢? 1.Image Classification(图像分类) 图像分类(下图左)就是对图像判断出所属的分类,比如在学习分类中数据集有人(person).羊(sheep).狗(dog)和猫(cat)四种,图像分类要求给定一个图片输出图片里含有哪些分类,比如下图的例子是含有person.sheep和dog三种. 2.Object detection(目标检测) 目标检测(上图右)简单来说就是图片里面有什么

语义分割(semantic segmentation) 常用神经网络介绍对比-FCN SegNet U-net DeconvNet,语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类;目标检测只有两类,目标和非目标,就是在一张图片中找到并用box标注出所有的目标.

from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里,先介绍几个概念,也是图像处理当中的最常见任务. 语义分割(semantic segmentation) 目标检测(object detection) 目标识别(object recognition) 实例分割(instance segmentation) 语义分割 首先需要了解一下什么是语义分割(s

【语义分割】PointRend

方法 输入是CxWxH的特征图,特征图是原图的1/4或1/16;输出是比输入分辨率更大的ont-hot编码形式的特征图,KxW'xH'. 模块具体有如下的三步: 1)选择少数的一些点进行预测,避免在高分辨率的输出中过量的计算所有的像素 2)每个被选中的点,点的特征被提取,真值点的特征被计算通过双线性插值,然后沿着通道维度编码子像素信息预测分割 3)head:接一个小的网络,进行预测 训练和测试中如何选点 测试:选点工作主要是受图形学中adaptive subdivision的启发,adaptiv

图像语义分割技术

引用自:https://www.leiphone.com/news/201705/YbRHBVIjhqVBP0X5.html 大多数人接触 "语义" 都是在和文字相关的领域,或语音识别,期望机器能够识别你发出去的消息或简短的语音,然后给予你适当的反馈和回复.嗯,看到这里你应该已经猜到了,图像领域也是存在 "语义" 的. 今天是 AI 大热年,很多人都关注与机器人的语音交互,可是有没有想过,将来的机器人如果不能通过图像来识别主人,家里的物品.宠物,那该多没意思.说近一

语义分割--全卷积网络FCN详解

语义分割--全卷积网络FCN详解 1.FCN概述 CNN做图像分类甚至做目标检测的效果已经被证明并广泛应用,图像语义分割本质上也可以认为是稠密的目标识别(需要预测每个像素点的类别). 传统的基于CNN的语义分割方法是:将像素周围一个小区域(如25*25)作为CNN输入,做训练和预测.这样做有3个问题: - 像素区域的大小如何确定 - 存储及计算量非常大 - 像素区域的大小限制了感受野的大小,从而只能提取一些局部特征 为什么需要FCN? 我们分类使用的网络通常会在最后连接几层全连接层,它会将原来二

语义分割之车道线检测Lanenet(tensorflow版)

Lanenet 一个端到端的网络,包含Lanenet+HNet两个网络模型,其中,Lanenet完成对车道线的实例分割,HNet是一个小网络结构,负责预测变换矩阵H,使用转换矩阵H对同属一条车道线的所有像素点进行重新建模 将语义分割和对像素进行向量表示结合起来的多任务模型,最近利用聚类完成对车道线的实例分割. 将实例分割任务拆解成语义分割和聚类,分割分支负责对输入图像进行语义分割(对像素进行二分类,判断像素属于车道线还是背景),嵌入分支对像素进行嵌入式表示,可将分割后得的车道线分离成不同的车道实

一块GPU就能训练语义分割网络,百度PaddlePaddle是如何优化的?

一. 图像语义分割模型DeepLab v3 随着计算机视觉的发展,语义分割成为了很多应用场景必不可少的一环. 比如网络直播有着实时剔除背景的要求,自动驾驶需要通过语义分割识别路面,与日俱增的应用场景对语义分割的精度和速度的要求不断提高.同时,语义分割数据集也在不断地进化,早期的Pascal VOC2,其分辨率大多数在1000像素以下.而Cityscape的语义分割数据集分辨率全部达到了1024*2048,总共5000张图片(精细标注),包含19类.这些数据集对研究者,计算设备,甚至框架都带来了更

人工智能必须要知道的语义分割模型:DeepLabv3+

图像分割是计算机视觉中除了分类和检测外的另一项基本任务,它意味着要将图片根据内容分割成不同的块.相比图像分类和检测,分割是一项更精细的工作,因为需要对每个像素点分类,如下图的街景分割,由于对每个像素点都分类,物体的轮廓是精准勾勒的,而不是像检测那样给出边界框. 图像分割可以分为两类:语义分割(Semantic Segmentation)和实例分割(Instance Segmentation),其区别如图所示. 可以看到语义分割只是简单地对图像中各个像素点分类,但是实例分割更进一步,需要区分开不同

语义分割之车道线检测(tensorflow版)

      由于项目需要,参考了多篇相关车道线检测论文与源码,设计了一套Tensorflow版车道线检测功能. 二.基本结构:       该模型主要由以下部分组成: 1.数据源:包括所有原始数据,分组后的数据: 2.数据预处理:包括数据的准备,数据的导入,数据的提取,数据的分组(训练与测试): 3.配置文件:包括各种参数与超参数,如:训练周期,训练步长,批量数据,学习率,卷积核大小,全连接大小,训练模型存放路径(checkpoint),摘要存放路径(summary)等: 4.基础网络:包括基本