PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程

什么是 PyTorch?

PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群:

  • NumPy 的替代品,可以利用 GPU 的性能进行计算。
  • 深度学习研究平台拥有足够的灵活性和速度

开始学习

Tensors (张量)

Tensors 类似于 NumPy 的 ndarrays ,同时  Tensors 可以使用 GPU 进行计算。

from future import print_function
import torch

构造一个5x3矩阵,不初始化。

x = torch.empty(5, 3)
print(x)

输出:

tensor(1.00000e-04 *
       [[-0.0000,  0.0000,  1.5135],
        [ 0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000]])

构造一个随机初始化的矩阵:

x = torch.rand(5, 3)
print(x)

输出:

tensor([[ 0.6291,  0.2581,  0.6414],
        [ 0.9739,  0.8243,  0.2276],
        [ 0.4184,  0.1815,  0.5131],
        [ 0.5533,  0.5440,  0.0718],
        [ 0.2908,  0.1850,  0.5297]])

构造一个矩阵全为 0,而且数据类型是 long.

Construct a matrix filled zeros and of dtype long:

x = torch.zeros(5, 3, dtype=torch.long)
print(x)

输出:

tensor([[ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0]])

构造一个张量,直接使用数据:

x = torch.tensor([5.5, 3])
print(x)

输出:

tensor([ 5.5000,  3.0000])

创建一个 tensor 基于已经存在的 tensor。

x = x.new_ones(5, 3, dtype=torch.double)
# new_* methods take in sizes
print(x)

x = torch.randn_like(x, dtype=torch.float)
# override dtype!
print(x)
# result has the same size

输出:

tensor([[ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.]], dtype=torch.float64)
tensor([[-0.2183,  0.4477, -0.4053],
        [ 1.7353, -0.0048,  1.2177],
        [-1.1111,  1.0878,  0.9722],
        [-0.7771, -0.2174,  0.0412],
        [-2.1750,  1.3609, -0.3322]])

获取它的维度信息:

print(x.size())

输出:

torch.Size([5, 3])

注意

torch.Size  是一个元组,所以它支持左右的元组操作。

操作

在接下来的例子中,我们将会看到加法操作。

加法: 方式 1

y = torch.rand(5, 3)
print(x + y)

Out:

tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

加法: 方式2

print(torch.add(x, y))

Out:

tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

加法: 提供一个输出 tensor 作为参数

result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)

Out:

tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

加法: in-place

# adds x to y
y.add_(x)
print(y)

Out:

tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

Note

注意

任何使张量会发生变化的操作都有一个前缀 ‘_‘。例如:x.copy_(y)x.t_(), 将会改变 x.

你可以使用标准的  NumPy 类似的索引操作

print(x[:, 1])

Out:

tensor([ 0.4477, -0.0048,  1.0878, -0.2174,  1.3609])

改变大小:如果你想改变一个 tensor 的大小或者形状,你可以使用 torch.view:

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())

Out:

torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

如果你有一个元素 tensor ,使用 .item() 来获得这个 value 。

x = torch.randn(1)
print(x)
print(x.item())

Out:

tensor([ 0.9422])
0.9422121644020081

PyTorch windows 安装教程:两行代码搞定 PyTorch 安装
http://pytorchchina.com/2018/12/11/pytorch-windows-install-1/
PyTorch Mac 安装教程
http://pytorchchina.com/2018/12/11/pytorch-mac-install/
PyTorch Linux 安装教程
http://pytorchchina.com/2018/12/11/pytorch-linux-install/

PyTorch QQ群

http://pytorchchina.com/2018/06/25/what-is-pytorch/

原文地址:https://www.cnblogs.com/tensorflownews/p/10176324.html

时间: 2024-11-10 17:31:23

PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程的相关文章

分析《Pytorch 深度学习》PDF中文+mobi+epub+源代码

深度学习为世界上的智能系统(比如Google Voice.Siri和Alexa)提供了动力.随着硬件(如GPU)和软件框架(如PyTorch.Keras.TensorFlow和CNTK)的进步以及大数据的可用性,人们在文本.视觉和分析等领域更容易实施相应问题的解决方案. 使用PyTorch轻松开发深度学习应用程序推荐学习<Pytorch 深度学习>.<Pytorch 深度学习>对当今前沿的深度学习库PyTorch进行了讲解.凭借其易学习性.高效性以及与Python开发的天然亲近性,

机器学习_深度学习_入门经典(永久免费报名学习)

机器学习_深度学习_入门经典(博主永久免费教学视频系列) https://study.163.com/course/courseMain.htm?courseId=1006390023&share=2&shareId=400000000398149 作者座右铭---- 与其被人工智能代替,不如主动设计机器为我们服务. 长期以来机器学习很多教材描述晦涩难懂,大量专业术语和数学公式让学生望而止步.生活中机器学习就在我们身边,谷歌,百度,Facebook,今日头条都运用大量机器学习算法,实现智能

AI全面入门经典书籍-pytho入门+数学+机器学习+深度学习(tensorflow)一次性打包

百度网盘:https://pan.baidu.com/s/1SShwxxBIHB_rynF_jUjApA 一.内容清单: 1..python入门书籍:?? ??? ?python基础教程.pdf?? ??? ?python语言及其应用.pdf?? ??? ?python语言入门.pdf?? ??? ?像计算机科学家一样思考python第2版.pdf ?? ??? ?备注:自己找一本精读,其他辅助阅读,会有不一样的效果.?? ? 2.数学:?? ??? ?同济高等数学 第六版 上册.pdf?? ?

深度学习:从入门到放弃

https://zhuanlan.zhihu.com/p/22976342 首发于深度学习:从入门到放弃 写文章登录 FCN学习:Semantic Segmentation 余俊 1 年前 感谢@huangh12 @郑途 @麦田守望者对标签图像生成的研究和讨论,这几天研究了一下,补充如下. -----------------------------------------------------分割线------------------------------------------------

2019最新Python学习教程(Python学习路线_Python爬虫教程)爬虫工程师必备的10个爬虫工具

2019最新Python学习教程(Python学习路线_Python爬虫教程)爬虫工程师必备的10个爬虫工具 爬虫工程师必备的10个爬虫工具! 最近很多学爬虫的伙伴让推荐顺手的爬虫工具,总结了一下,把这些好用的爬虫工具都跟你们找齐活了! 磨刀不误砍柴工!都知道工欲善其事必先利其器,那么作为经常要和各大网站做拉锯战的爬虫工程师们,更需要利用利用好身边的一切法器,才能更快的攻破对方防线.这里以日常爬虫流程,给大家介绍十款爬虫工具,相信大家掌握以后,工作效率提高是完全没有问题了! 大家也可以看看有你们

深度学习之机器学习傻瓜教程

什么是机器学习? 传统的教科书会用一大堆高等数学,线性代数,概率论,统计学等知识把你拒之门外,这里博主俺决定用一个很简单的例子给不用你任何高深的数学知识来理解. 在写机器学习之前,我们来举个例子.假设你是个古代的国王,那里没有现代的科技,你想找个预报天气比较准的人来帮你预报天气.你要怎么办呢?通常,我们会找一个人,让他预报10000天,看它的准确率如何,然后再找一个人,再预报10000天,看它预报的准确率如何.依次类推,你找了100个人,终于找到了一个准确率在90%的人,你就征用它当你的气象局局

深度学习动手入门:GitHub上四个超棒的TensorFlow开源项目

作者简介:akshay pai,数据科学工程师,热爱研究机器学习问题.Source Dexter网站创办人. TensorFlow是Google的开源深度学习库,你可以使用这个框架以及Python编程语言,构建大量基于机器学习的应用程序.而且还有很多人把TensorFlow构建的应用程序或者其他框架,开源发布到GitHub上. 这次跟大家分享一些GitHub上令人惊奇的TensorFlow项目,你可以直接在你的应用中使用,或者根据自身所需进一步予以改进. TensorFlow简介 如果你已经知道

入门实战《深度学习技术图像处理入门》+《视觉SLAM十四讲从理论到实践》

学习图像识别处理,想在数据分析竞赛中取得较高的排名,看了<深度学习技术图像处理入门>电子书,一边看电子书一边做标记,对配套的代码也做了测试,收获颇多. 从机器学习.图像处理的基本概念入手,逐步阐述深度学习图像处理技术的基本原理以及简单的实现. 学习理论后做实验,使用卷积神经网络进行端到端学习,构建深度卷积神经网络,使用循环神经网络改进模型,评估模型,测试模型.最关键的是可以将模型运用于实战之中,将深度学习模型导入到工程中,数据类型转换函数,实施CAM可视化,这是我最需要的. 视觉和图形学真是一

[资源]深度学习从入门到放弃

Relationship: Machine Learning ----> Deep Learning   ---->Deep Reinforcement Learning [Learning Road Map] Reinforcement Learning Papers: Deep Learning Papers Reading Roadmap Courses: Udacity: Deep Learning Data Science: Deep Learning in Python Bay A