HTTP3.0(QUIC的实现机制)

回顾HTTP2.0

HTTP1.1在应用层以纯文本的形式进行通信,每次通信都要带完整的HTTP的头,而且不考虑pipeli模式的化,每次的过程总是像上面描述的那样一去一回。那样在实时性、并发想上都存在问题

头部压缩:HTTP2.0会对HTTP的头进行一定的压缩,将原来每次都要携带的大量key value在两端建立一个索引表,对相同的头只发送索引表中的索引

HTTP2.0协议将一个TCP的连接中,切分成多个流。每个流都有自己的ID,而且流可以是客户端发服务端,也可以是服务端发客户端,它其实只是一个虚拟的通道。流是有优先级的

HTTP2.0还将所有的传输信息分割为更小的信息和帧,并对它们采用二进制格式编码。常见的帧有Header帧,用于传输Header内容,并且会开启一个新的流,再就是Data帧,用来传输正文实体。多个Data帧属于一个流

通过这两种机制,http2.0的客户端可以将对个请求不同的流中,然后将请求内容拆成帧,进行二进制传输。这些真可以打散乱序发送,然后根据每个帧首部的流标识符重新组装,并且可以根据优先级,决定先处理那个流的数据

二进制传输就是以上

例子:

假设一个页面要发送三个独立的请求,一个获取css,一个获取js,一个获取图片jpg。如果使用HTTP1.1就是串行的,但是如果使用HTTP2.0,就可以在一个连接里,客户端和服务端都可以同时发送多个请求或回应,而且不用按照顺序一对一对应

http2.0成功解决了http1.1的队首阻塞问题,同时,也不需要通过http1.x的pipeline机制用多条tcp连接来实现并行请求和响应;减少了tcp连接数对服务器性能的影响,同时将页面的多个数据css,js,jpg等通过一个数据链接进行传输,能够加快页面组件的传输速度。

QUIC协议

HTTP2.0 也是基于TCP协议的,tcp协议在处理包时是有严格顺序的

当其中一个数据包遇到问题,TCP连接需要等待找个包完成重传之后才能继续进行,虽然HTTP2.0通过多个stream,使得逻辑上一个tcp连接上的并行内容,进行多路数据的传输,然而这中间没有关联的数据,一前一后,前面stream2的帧没有收到,后面stream1的帧也会因此堵塞

于是google的 QUIC协议从TCP切换到UDP

  • 机制一:自定义连接机制

    一条tcp连接是由四元组标识的,分别是源ip、源端口、目的端口,一旦一个元素发生变化时,就会断开重连,重新连接。在次进行三次握手,导致一定的延时

在TCP是没有办法的,但是基于UDP,就可以在QUIC自己的逻辑里面维护连接的机制,不再以四元组标识,而是以一个64

位的随机数作为ID来标识,而且UDP是无连接的,所以当ip或者端口变化的时候,只要ID不变,就不需要重新建立连接

  • 机制二:自定义重传机制

    tcp为了保证可靠性,通过使用序号和应答机制,来解决顺序问题和丢包问题

任何一个序号的包发过去,都要在一定的时间内得到应答,否则一旦超时,就会重发这个序号的包,通过自适应重传算法(通过采样往返时间RTT不断调整)

但是,在TCP里面超时的采样存在不准确的问题。例如发送一个包,序号100,发现没有返回,于是在发送一个100,过一阵返回ACK101.客户端收到了,但是往返的时间是多少,没法计算。是ACK到达的时候减去第一还是第二。

QUIC也有个序列号,是递增的,任何宇哥序列号的包只发送一次,下次就要加1,那样就计算可以准确了

但是有一个问题,就是怎么知道包100和包101发送的是同样的内容呢?quic定义了一个offset概念。QUIC既然是面向连接的,也就像TCP一样,是一个数据流,发送的数据在这个数据流里面有个偏移量offset,可以通过offset查看数据发送到了那里,这样只有这个offset的包没有来,就要重发。如果来了,按照offset拼接,还是能够拼成一个流。

  • 机制三: 无阻塞的多路复用

有了自定义的连接和重传机制,就可以解决上面HTTP2.0的多路复用问题

同HTTP2.0一样,同一条 QUIC连接上可以创建多个stream,来发送多个HTTP请求,但是,QUIC是基于UDP的,一个连接上的多个stream之间没有依赖。这样,假如stream2丢了一个UDP包,后面跟着stream3的一个UDP包,虽然stream2的那个包需要重新传,但是stream3的包无需等待,就可以发给用户。

  • 机制四:自定义流量控制

TCP的流量控制是通过滑动窗口协议。QUIC的流量控制也是通过window_update,来告诉对端它可以接受的字节数。但是QUIC的窗口是适应自己的多路复用机制的,不但在一个连接上控制窗口,还在一个连接中的每个steam控制窗口。

在TCP协议中,接收端的窗口的起始点是下一个要接收并且ACK的包,即便后来的包都到了,放在缓存里面,窗口也不能右移,因为TCP的ACK机制是基于序列号的累计应答,一旦ACK了一个序列号,就说明前面的都到了,所以是要前面的没到,后面的到了也不能ACK,就会导致后面的到了,也有可能超时重传,浪费带宽

QUIC的ACK是基于offset的,每个offset的包来了,进了缓存,就可以应答,应答后就不会重发,中间的空档会等待到来或者重发,而窗口的起始位置为当前收到的最大offset,从这个offset到当前的stream所能容纳的最大缓存,是真正的窗口的大小,显然,那样更加准确。

原文地址:https://www.cnblogs.com/chenjinxinlove/p/10104854.html

时间: 2024-10-14 00:42:45

HTTP3.0(QUIC的实现机制)的相关文章

FreeBSD 5.0中强制访问控制机制的使用与源代码分析【转】

本文主要讲述FreeBSD 5.0操作系统中新增的重要安全机制,即强制访问控制机制(MAC)的使用与源代码分析,主要包括强制访问控制框架及多级安全(MLS)策略两部分内容.这一部分讲述要将MAC框架与MLS策略用起来,应该做的一些工作,以及如何有效使用它们的问题. ? 强制访问控制(英文缩写MAC)是实现操作系统安全的一个重要的方法,现在几乎所有的安全操作系统都采用强制访问控制作为其核心安全机制之一.强制访问控制是对操作系统的各种客体(如文件.socket.系统FIFO.SCD.IPC等)进行细

Android7.0 Vold 进程工作机制分析之整体流程

Android7.0 Vold 进程工作机制分析之整体流程 一.Vold简介 Vold是Volume Daemon的缩写,负责管理和控制Android平台外部存储设备,包括SD插拨.挂载.卸载.格式化等.它是通过init进程解析init.rc脚本所启动的进程.它处于Native层. 二.基础架构 这里引用Gityuan博客的一张图. SystermServer进程和Vold进程是通过Socket进行通信的,Vold进程和Kernel是通过Netlink 进行通信的,Netlink 是一种特殊的S

cocos2d-x(3.0+)内存管理框架和机制

Cocos2d-x用了一种引用计数的方式来管理内存对象,通过类Ref.AutoreleasePool和PoolManager来完成. Ref为引用计数类,其构造函数是protected的访问类型,当Ref的对象被创建的时候它的引用计数为1 在对象创建的时候会调用create,然后调用autorelease,将对象放入对象池(AutoreleasePool的一个对象中)方便后面的统一管理, retain增加引用计数,release调用时会立刻减少引用计数 引擎初始化后就会创建一个默认的自动释放对象

Android6.0触摸事件分发机制解读

本篇博文是Android触摸事件分发机制系列博文的第一篇,带领大家从全局掌握Android触摸事件分发机制.特别声明的是,本源码解读是基于最新的Android6.0版本. (一)Android6.0源码解读之View点击事件分发机制 (二)Android6.0源码解读之ViewGroup点击事件分发机制 (三)Android6.0源码解读之Activity点击事件分发机制 为什么要解读触摸事件分发机制 1.掌握View事件分发机制 2.为解决View滑动冲突提供理论支持 3.了解Android最

【11.0】Hibernate缓存机制(一级和二级缓存)

1.  一级缓存,二级缓存,查询缓存: 2.  一级缓存又称为session缓存.生命周期相同.周期较短.事务级别的缓存. get使用了一级缓存,用get查数据时,首先检查缓存中是否有该数据,如果有直接从缓存中取数据,如果没有再查询数据库,并且将数据放入缓存中. load也支持一级缓存.load还支持lazy.当load从数据库中查询数据后,也会将数据放入缓存. 3.  unique/list查询不会去查看缓存,但是list查询的实体对象将会放入缓存中. 4.  iterate会执行查询id的操

Yii2.0 Cookies机制和使用方法

在实际的项目开发过程中,用到了Yii2.0 Cookies机制!但是遇到一个十分奇葩的问题,同一个YII框架,backend下Cookies能够正常存储于客户端,但是frontend始终不行.文章的最后将会解答这个疑问. 一.Yii2.0 Cookies的验证机制 Yii2.0的Cookies不同于常规的PHP的Cookie设置,YII2.0Cookies使用Cookie类自定义名称.值.过期时间:然后将设置好的cookie配置项装载到CookieCollection中.然后服务器端处理完客户端

koahub.js 0.09 发布,新增钩子机制

koahubjs发布0.09 新增钩子机制添加钩子机制,控制器钩子和函数钩子修复自动加载bug,实现除自动加载导出的default外,还能自动加载其他的方法记koahubjs钩子开发过程在使用koahubjs开发项目完成之后,总是需要另外增加一些插件功能,这种情况下改动项目代码,风险太大,所以钩子机制不可缺少.koahubjs将钩子加载到了内存中,原因是因为koahubjs框架并没有内置数据库,而且加载到内存中更加灵活.钩子1控制器钩子执行某个http请求的时候,想要调用另外一个控制器的方法钩子

Android 7.0 Nougat(牛轧糖)---对开发者来说

android 7.0出来了.让你的app准备迎接最新的android版本吧,支持节省电量和内存,这样新的系统行为.使用多窗口UI.直接恢复通知以及其他操作来扩展你的app. android 7.0介绍了各种各样的新功能给用户和开发者, 本文重点介绍面向开发者的一些新功能. 确保检查android 7.0的行为变化,了解有关平台的变化可能会影响你的app. 如果要了解更多的关于用户的新功能,请查看www.android.com. 1.支持多窗口 在android 7.0中,我们介绍了在支持多窗口

Linux的分段和分页机制

1 基于80x86的Linux分段机制 80386的两种工作模式:80386的工作模式包括实地址模式和虚地址模式(保护模式).Linux主要工作在保护模式下. 在保护模式下,80386虚地址空间可达16K个段,每段大小可变,最大达4GB.逻辑地址到线性地址的转换由80386分段机制管理.段寄存器CS.DS.ES.SS.FS或GS各标识一个段.这些段寄存器作为段选择器,用来选择该段的描述符. 分段逻辑地址到线性地址转换图: Linux对80386的分段机制使用得很有限,因为Linux的设计目标是支