关于积性函数的一些知识

前言

最近在学习一些玄学的数学知识(如莫比乌斯反演杜教筛)时,我发现自己对于一些数学的理论知识了解得还不够多(不像\(XRY\)奆佬一样初一就把大学数学学完了),于是决定好好去学习一下这面的知识。

例如关于积性函数的知识,就是比较重要的一块内容。


定义

什么是积性函数

其实它的定义还是很好理解的:若对于一个数论函数\(f(x)\),已知\(f(x)=1\),且对于任意互质的正整数\(p,q\)都满足\(f(pq)=f(p)f(q)\),则称该函数\(f(x)\)为一个积性函数。

这么说来,貌似我们比较常用的如\(\phi(n)\)和\(\mu(n)\)等函数似乎都属于积性函数。

实际上,我们平时常见的一些数论函数实际上都属于积性函数

由此可见积性函数之重要性。


常见种类

下面我们介绍一些比较常见的积性函数:

欧拉函数:\(\phi(n)\)

该函数表示的是不大于\(n\)与\(n\)互质的数的个数。

表达式:\(\phi(n)=\sum_{i=1}^n[gcd(n,i)==1]\)

莫比乌斯函数:\(\mu(n)\)

关于它可以去看看这一篇博客:初学莫比乌斯反演

约数个数:\(d(n)\)

表达式:\(d(n)=\sum_{i|n} 1\)

约数和函数:\(\sigma(n)\)

表达式:\(\sigma(n)=\sum_{i|n}i\)


一些完全积性函数

下面介绍一些比较简单、但是用处很大的完全积性函数。(关于它们的用处可以参考博客初学狄利克雷卷积

对了,首先要讲一讲什么是完全积性函数。

上面在积性函数的定义中提到,对于任意互质的正整数\(p,q\)满足\(f(pq)=f(p)f(q)\)的函数是积性函数,而把"互质"这个条件去掉,得到的函数就是完全积性函数。

常见的完全积性函数有一下几个:

元函数:\(e(n)\)

表达式:\(e(n)=[n==1]\)

(不知道是否有人跟我一样想到了莫比乌斯函数的某个性质:\(\sum_{d|n}\mu(d)=[n==1]\))

恒等函数:\(I(n)\)

表达式:\(I(n)=1\)

单位函数:\(id(n)\)

表达式:\(id(n)=n\)


后记

关于积性函数的一些知识差不多就是这些了。

关于更多的内容,可以去看一下另一篇博客:初学狄利克雷卷积,里面也涉及到一些与积性函数相关的内容。

原文地址:https://www.cnblogs.com/chenxiaoran666/p/MultyFunction.html

时间: 2024-11-09 03:18:33

关于积性函数的一些知识的相关文章

浅谈一类积性函数的前缀和(转载)

本文转自:http://blog.csdn.net/skywalkert/article/details/50500009 另外,莫比乌斯反演和杜教筛其他可转到 http://blog.leanote.com/post/totziens/%E8%8E%AB%E6%AF%94%E4%B9%8C%E6%96%AF%E5%8F%8D%E6%BC%94 写在前面 笔者在刷题过程中遇到一些求积性函数前缀和的问题,其中有一类问题需要在低于线性时间复杂度的算法,今天就来浅析一下这类问题的求解方法,当作以后讲课

HDU2879 HeHe 数论积性函数

题目名字有点搓,做题时没做出来,学长他们做出了,发现跟网上题解的思路没太大区别,网上所有题解的分析也都转自同一个地方,看样子这道题目不是那么好想的,没办法按照解析画了半天,计算器按了半天,理解了,自己敲出来了,觉得值得留念,打算再刷几道这样的 转自:http://blog.csdn.net/kksleric/article/details/8096914 定义:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数.若对于某积

POJ2480 Longge's problem 欧拉函数的应用 && 积性函数

题意很简单,求sum(gcd(i,n))   1<=i<=n; 这题看到后第一反应并没有里用积性函数的性质,不过也可以做,欣慰的是我反应还是比较快的 设f(n)=gcd(1,n)+gcd(2,n)+....+gcd(n-1,n) + gcd(n,n), 用g(n,i)表示满足 gcd(x,n)=i的 x的个数 (x小于n),则 f(n)=sum{i*g(n,i)}; 同时又利用 扩展欧几里德的性质  gcd(x,n)=i  的充要条件是 gcd(x/i,n/i)==1,所以 满足 x/i的解有

HDU 4002 Find the maximum (欧拉函数-积性函数的性质(2011年大连赛区网络赛第二题)

[题目链接]:click here~~ [题目大意]: 给出一个整数n,求一个数x,x在1到n之间,并且x/φ(x)最大(其中φ(x)为x的欧拉函数). [思路]: 由欧拉函数为积性函数,即:如果 则有: 且: 则有: 要使f(x)最大,须使x含尽量多的不同素数因子. 代码: /* * Problem: HDU No.4002 * Running time: 1700MS * Complier: java * Author: javaherongwei * Create Time: 0:08 2

常见积性函数(转自百科)

前面做hdu1452 用过积性函数这个东西...刚才遇到又不会了.所以弄一点资料提醒一下自己 在非数论的领域,积性函数指所有对于任何a,b都有性质f(ab)=f(a)f(b)的函数. 在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数. 若对于某积性函数 f(n),就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的.[1] s(6)=s(2)*s(3)=3*4=12; s(20)=

读贾志鹏《线性筛法与积性函数》笔记

1.欧拉筛法在线性时间内求素数以及欧拉函数 代码: 1 procedure get; 2 var i,j,k:longint; 3 begin 4 tot:=0; 5 fillchar(check,sizeof(check),false); 6 for i:=2 to n do 7 begin 8 if not(check[i]) then 9 begin 10 inc(tot); 11 p[tot]:=i; 12 fai[i]:=i-1; 13 end; 14 for j:=1 to tot

HDU 1452 Happy 2004(因子和的积性函数)

题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都有性质f(ab)=f(a)f(b)的函数. 在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数. 若对于某积性函数 f(n),就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的. s(

poj 2480 Longge&amp;#39;s problem 积性函数性质+欧拉函数

题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d | n}phi(n / d) * d ,后者是积性函数),能够这么解释:当d是n的因子时,设1至n内有a1,a2,..ak满足gcd(n,ai)==d,那么d这个因子贡献是d*k,接下来证明k=phi(n/d):设gcd(x,n)==d,那么gcd(x/d,n/d)==1,所以满足条件的x/d数目为phi(

POJ 2480 Longge&amp;#39;s problem 积性函数

题目来源:POJ 2480 Longge's problem 题意:求i从1到n的gcd(n, i)的和 思路:首先假设m, n 互质 gcd(i, n*m) = gcd(i, n)*gcd(i, m) 这是一个积性函数积性函数的和还是积性函数 由欧拉函数知识得 phi(p^a) = p^a - p^(a-1) p是素数 a是正整数 得到终于答案f(n) = f(p1^a1)*f(p2^a2)*...*f(pn^an) 当中f(p^a) = a*(p^a-p^(a-1))+p^a #includ