TensorFlow被发现漏洞背后:关于AI安全我们的傻与天真

当我们一直在讨论AI能给互联网安全带来什么影响的时候,可能一直都忽略了一个问题:AI本身也不安全。

这两天的新闻恰如其分地提醒了我们这一点。近日,谷歌被爆其机器学习框架TensorFlow中存在的严重安全风险,可被黑客用来制造安全威胁,谷歌方面已经确认了该漏洞并做出了整改回应。

虽然是提前发现,这些漏洞本身没有带来实质威胁。但这条消息还是让我们看到了某种蠢蠢欲动的不安。TensorFlow、Torch、Caffe这些机器学习开发框架,差不多是如今AI开发者与研究者的标准配置,但这些平台最近却纷纷被爆出存在安全漏洞和被黑客利用的可能性。

某种意义上来说,这些消息在提醒我们同一个问题:当我们急切的将资金与用户关系聚集在机器学习周围时,也可能是将巨大的危险捆绑在了身上。

更重要的是,面临AI安全问题,我们中的大部分人还处在很傻很天真的“懵懂状态”,对它的逻辑和危害性近乎一无所知。

本文希望来科普一下这些内容,毕竟防患于未然,等到真正出现大事件再惊叹也就晚了。另外必须提醒开发者和企业的是,在谷歌这些大公司不遗余力的推广自家机器学习平台,并且为了吸引使用者而快速迭代、大量发布免费资源时,开发者本身一定要留个心眼,不能不假思索的使用。

比起心血毁于一旦,更多的审查机制和更严密的安全服务是非常值得的。

盲点中的魔鬼:机器学习框架的安全隐患

说机器学习平台的漏洞,有可能让开发者心血付诸东流绝不是开玩笑。在今年上半年的勒索病毒事件里,我们已经见识过了如今的黑客攻击有多恐怖。而勒索病毒本身就是利用了微软系统中的漏洞,进行针对式攻击锁死终端。

可以说,在勒索病毒的洗礼之后,信息产业已经进入了“漏洞霸权时代”。只要拥有了更多漏洞,就拥有了大范围的控制权与支配权。随着黑客攻击的工具化和门槛降低,能力一般的攻击者也可以利用平台漏洞发动广泛攻击。

但在我们愈发重视“漏洞产业”带给今天世界的安全隐患时,却不自主的产生了一个视线盲区。那就是人工智能。

这里普及一下今天大部分AI开发任务的基本流程:一般来说,一个开发者想要从头开始开发深度学习应用或者系统,是一件极其麻烦,几乎不可能的事。所以开发者会选择利用主流的开发框架。比如这次被爆出隐患的谷歌TensorFlow。

利用这类平台,开发者可以用平台提供的AI能力,结合开源的算法与模型,训练自己的AI应用。这样速度快效率高,也可以吸收最先进的技术能力。这种“不能让造车者从开发轮子做起”的逻辑当然是对的,但问题也随之到来了:假如轮子里面有问题呢?

由于大量开发者集中利用机器学习框架训练AI是近两年的事情,此前也没有爆出过类似平台存在安全问题,所以这个领域的安全因素一直没有被重视过,可能大部分AI开发者从来都没有想过会存在安全问题。

但这次被发现的漏洞却表明:利用TensorFlow本身的系统漏洞,黑客可以很容易的制造恶意模型,从而控制、篡改使用恶意文件的AI应用。

由于一个投入使用的深度学习应用往往需要复杂的训练过程,所以恶意模型的攻击点很难短时间被察觉。但由于智能体内部的逻辑关联性,一个点被黑客攻击很可能将会全盘受控。这种情况下造成的安全隐患,显然比互联网时代的黑客攻击更加严重。

理解了这些,我们可能会达成一个并不美好的共识:我们一直在担心的AI失控,可能根本不是因为AI太聪明想夺权,而是居心不良的黑客发动的。

AI“失控”:一个今天不得不面对的问题

相比于经典计算的信息存储与交互模式,人工智能,尤其是机器学习类任务,最大的改变之一就是展现出了信息处理的整体性和聚合性。比如著名AlphaGo,它不是对每种棋路给出固定的应对模式,而是对棋局进行预判和自我推理。它的智慧不是若干信息组成的集合,而是一个完整的“能力”。

这是AI的优点,但很可能也是AI的弱点。试想,假如AlphaGo中的某个训练模型被黑客攻击了,让系统在该打吃的时候偏偏就不。那么最终展现出的将不是某个棋招运算失当,而是干脆一盘棋也赢不了。

说白了,AI注定是一个牵一发动全身的东西,所以平台漏洞带来的安全风险才格外可怕。

AlphaGo毕竟还只是封闭的系统,即使被攻击了大不了也就是下棋不赢。但越来越多的AI开始被训练出来处理真实的任务,甚至极其关键的任务。那么一旦在平台层面被攻克,将带来无法估计的危险。

比如说自动驾驶汽车的判断力集体失灵、IoT体系被黑客控制、金融服务中的AI突然瘫痪、企业级服务的AI系统崩溃等等情况,都是不出现还好,一旦出现就要搞个大事情。

由于AI系统紧密而复杂的连接关系,很多关键应用将从属于后端的AI体系,而这个体系又依赖平台提供的训练模型。那么一旦最后端的平台失守,几乎必然引发规模化、连锁式的崩盘——这或许才是我们今天最应该担心的AI失控。

AI产业的风险,在于某个黑客一旦攻克了机器学习平台的底层漏洞,就相当于把整个大厦的最下一层给炸掉。这个逻辑此前很少被人关注,却已经被证明了其可能性存在。而最可怕的是,面对更多未知的漏洞和危险,世界范围内的AI开发者近乎是束手无策的。

家与国:无法逃避的AI战略角力

在认识到AI开发平台可能出现的底层问题,以及其严重的危害性之后,一个顺理成章的联想也会浮出我们的脑海:国家层面的AI安全与战略角力。

有人说,百度等公司代表的中国AI力量崛起,已经让美国科技界感到了威胁。事实上,这种角力绝不只是存在于产业层面。今年7月,哈佛大学肯尼迪政治学院贝尔弗科学与国际事务中心发布的《人工智能与国家安全》报告里,就专门指出AI很可能在接下来一段时间内,对多数国民产业形成革命性的影响,成为产业中的关键应用。那么一旦AI安全受到威胁,整个美国经济将受到重大打击。

同样的道理,当然也适用于今天与美国抗衡的AI大国,中国。这次TensorFlow安全漏洞曝光后,我们联系了一家国内机器视觉方向的创业公司,他们所使用的训练模型全部来自于TensorFlow中的社区分享。沟通之后的结论是,如果真受到黑客恶意模型的袭击,他们的产品将瞬间瘫痪。

这仅仅是一家创业公司,据了解,国内使用TensorFlow进行训练的还包括京东、小米、中兴等大型企业,以及不少科研院所的研发项目。未来,很有可能还有更多更重要的中国AI项目在欧美的平台上进行训练部署,当这些东西暴露在黑客攻击的面前,甚至控制权掌握在别国手中,我们真的可以放心这样的AI发展之路吗?

这也绝不是杞人忧天。勒索病毒爆发之后,追根溯源就会发现,这些黑客工具的源头来自美国情报系统研发的网络攻击武器。武器这种东西,制造出来就是为了杀伤的,无论是制造者使用,还是被盗后流出,最终吃亏的只能是没有防范的那群人。

各种可能性之下,AI安全问题在今天已经绝不是儿戏。而中国产业至少能做两件事:1是组建专业的AI防护产业,将互联网安全升级为AI安全;2是必须逐步降低对欧美平台的依赖度,这里当然不是民粹主义的闭关锁国。而是应该给开发者更多选择,让整个产业自然而然地向国家AI安全战略靠拢。比如百度打造的从芯片到框架,再到平台体系与安全监督机制的开发者赋能计划,就在一步步将本应属于中国的AI开发根基留在中国。

总之,AI本身的安全防护,已经成为了开发者必须在意、大平台需要承担责任、国家竞争需要争抢的一个环节。希望最终一起人为的AI失控事件都不要到来。毕竟吃一堑长一智的事情在互联网历史上已经发生太多了。

希望这次我们可以预见危险,而不是痛而后悟吧。

时间: 2025-01-10 01:06:53

TensorFlow被发现漏洞背后:关于AI安全我们的傻与天真的相关文章

华为腾讯用户隐私互怼的背后,AI才是重点!

日前,中国硬件巨头华为,软件巨头腾讯,因<华尔街日报>一篇名为<华为和腾讯陷入用户数据之争 后者要求政府介入>的报道而成为了媒体关注的焦点. 华为手机曾在此前推出一款荣耀Magic手机,它也被称为华为第一款人工智能手机,它可以通过收集数据从而达到智能推荐等功能,而这些数据里面就包括了微信聊天记录等大量信息. 在<华尔街日报>的报道中,双方互撕的焦点集中在用户数据上.腾讯方面认为,华为手机收集微信用户数据的做法实际上夺取了腾讯数据,侵犯了微信用户的隐私.而华为方面却认为,

千人千面、个性化推荐,解读数据赋能商家背后的AI技术

12月6-7日,由阿里巴巴集团.阿里巴巴技术发展部.阿里云云栖社区联合主办,以"2016 双 11 技术创新"为主题的阿里巴巴技术论坛,来自商家事业部的技术总监魏虎给大家分享了数据赋能商家背后的AI技术.首先对大数据和人工智能进行了简要介绍,接着着重分析了客户运营平台,包括实时分群算法.match和rank框架以及千人千面技术,最后讲解了千牛头条.服务市场和智能客服中AI技术的应用. 背景介绍 大数据 大数据主要有四个特征:Volume(大量).Value(价值).Velocity(速

大前端技术系列:TWA技术+TensorFlow.js =&gt; 集成原生和AI功能的app

大前端技术系列:TWA技术+TensorFlow.js => 集成原生和AI功能的app ( 本文内容为melodyWxy原作,git地址:https://github.com/melodyWxy/twa-tf.js , ) 什么是TWA 简单来讲,TWA(Trusted Web Activity 可信任的网络应用)即: 基于Chrome Custom Tabs,利用谷歌浏览器提供的api,实现强大功能的桌面应用技术. 如果说你对PWA这个概念有所了解,那么TWA的实现就相当于 PWA + 更丰

基于tensorflow的躲避障碍物的ai训练

import pygameimport randomfrom pygame.locals import *import numpy as npfrom collections import dequeimport tensorflow as tf # http://blog.topspeedsnail.com/archives/10116import cv2 # http://blog.topspeedsnail.com/archives/4755score = 0BLACK = (0, 0,

京东商城背后的AI技术能力揭秘 - 基于关键词自动生成摘要

作者:京东AI研究院 导言 过去几十年间,人类的计算能力获得了巨大提升:随着数据不断积累,算法日益先进,我们已经步入了人工智能时代.确实,人工智能概念很难理解,技术更是了不起,背后的数据和算法非常庞大复杂.很多人都在疑惑,现在或未来AI将会有哪些实际应用呢? 其实,关于AI的实际应用以及所带来的商业价值并没有那么的"玄幻",很多时候就已经在我们的身边.接下来,[AI论文解读]专栏将会通过相关AI论文的解读,由深入浅地为大家揭秘,AI技术是如何对电商领域进行赋能,以及相关的落地与实践.人

AI繁荣下的隐忧——Google Tensorflow安全风险剖析

本文由云+社区发表 作者:[ Tencent Blade Team ] Cradmin 我们身处一个巨变的时代,各种新技术层出不穷,人工智能作为一个诞生于上世纪50年代的概念,近两年出现井喷式发展,得到各行各业的追捧,这背后来自于各种力量的推动,诸如深度学习算法的突破.硬件计算能力的提升.不断增长的大数据分析需求等.从2017年的迅猛发展,到2018年的持续火爆,国内外各个巨头公司如腾讯.阿里.百度.Google.微软.Facebook等均开始在人工智能领域投下重兵,毫无疑问,这一技术未来将会深

从 2014 年漏洞,学到什么?

在向前看开始规划2015年之前,让我们花上几分钟记住2014年的漏洞,以及我们可以从中学到什么.每年都会出现几个零时差漏洞和大量来自软件厂商的漏洞修复程序,2014年有些不同: 1.每年所披露的安全漏洞总数近1万个.正因为如此,CVE数据库的维护者宣布将修改CVE语法,它现在允许每年可分配的漏洞标识符达到1000万个. 2.重大的"命名"漏洞如Heartbleed心脏滴血漏洞.Shellshock.Poodle和WinShock被披露,并在安全产业内广为人知.这些漏洞因为其严重的影响.

少听大忽悠的AI万能论:不打开四道锁,企业永远无法享用AI

如果你是一位科技和AI爱好者,想必会在各种信息渠道看到"人工智能又能干什么了"."人工智能又在某领域超过人类了",这类消息近乎于每天都在我们的眼球前摇晃. 久而久之,我们似乎会习惯性地认为AI已经可以拿下一切问题,甚至觉得AI已经是万能的. 这种想象假如只存在于普通消费者脑中,那么可能还好:假如企业家和行业从业者也靠这些判断来贸然尝试引入AI,那麻烦可就大了. 事实上,今天无论是科技大V.社交网络上的"明白人",还是各种培训讲师.创业BP,都在似

深入剖析最新IE0day漏洞

在2018年4月下旬,我们使用沙箱发现了IE0day漏洞;自从在野外发现上一个样本(CVE-2016-0189)已经有两年多了.从许多方面来看,这个特别的漏洞及其后续的开发比较有趣.下一篇文章将分析最新的漏洞背后的核心原因,CVE-2018-8174. 寻找0day漏洞 我们从VirusTotal (VT)开始搜寻0day漏洞,有人在2018年4月18日上传了一个有趣的漏洞.这一漏洞被包括卡巴斯基在内的几家AV供应商发现,特别是我们的通用启发式逻辑,用于一些较老的Microsoft Word漏洞