FASTER CNNS WITH DIRECT SPARSE CONVOLUTIONS AND GUIDED PRUNING(2)

摘要:

以前的剪枝技术的缺点。

这个sparsity patterns到底是什么意思?

时间: 2024-11-04 14:29:54

FASTER CNNS WITH DIRECT SPARSE CONVOLUTIONS AND GUIDED PRUNING(2)的相关文章

FASTER CNNS WITH DIRECT SPARSE CONVOLUTIONS AND GUIDED PRUNING

题目:faster cnns with direct sparse convolutions and guided pruning ,直接稀疏卷积和指导剪枝  能让cnn变faster?直接稀疏卷积是个什么东西?指导剪枝应该是提出了一种剪枝的方式. Introduction:

第17章 内存映射文件(3)_稀疏文件(Sparse File)

17.8 稀疏调拨的内存映射文件 17.8.1 稀疏文件简介 (1)稀疏文件(Sparse File):指的是文件中出现大量的0数据,这些数据对我们用处不大,但是却一样的占用空间.NTFS文件系统对此进行了优化,那些无用的0字节被用一定的算法压缩起来.例如声明一个很大的稀疏文件(如100GB),这个文件实际上并不需要占用那么大的空,内部都是一些无用的0数据,那么NTFS就会利用算法释放这些无用的0字节空间,这是对磁盘占用空间的一种优化.但要注意FAT32并不支持稀疏文件的压缩. (2)与稀疏文件

(转)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(更快的RCNN:通过区域提议网络实现实时)

原文出处 感谢作者~ Faster R-CNN: Towards Real-Time Object Detection with Region ProposalNetworks Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun 摘要 目前最先进的目标检测网络需要先用区域建议算法推测目标位置,像SPPnet[7]和Fast R-CNN[5]这些网络已经减少了检测网络的运行时间,这时计算区域建议就成了瓶颈问题.本文中,我们介绍一种区域建议网络(Reg

Faster RCNN代码理解(Python)

转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初始化参数:args = parse_args() 采用的是Python的argparse 主要有–net_name,–gpu,–cfg等(在cfg中只是修改了几个参数,其他大部分参数在congig.py中,涉及到训练整个网络). cfg_from_file(args.cfg_file) 这里便是代用

解读(GoogLeNet)Going deeper with convolutions

(GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包括depth和width两方面.在有足够的labeled training data 时这种方法是最简单以及稳妥的方法来获得一个高质量的模型.但是往往实际中大的网络会有更多的参数,当training data数量很少时,很容易出现overfitting,并且大的网络需要的计算资源也是更多.这是需要将

Deep Learning论文笔记之(二)Sparse Filtering稀疏滤波

Deep Learning论文笔记之(二)Sparse Filtering稀疏滤波          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢. 本文的论文来自: Sparse filtering, J. N

Deep Learning 系列(4):稀疏编码(sparse coding)和主成分分析(ICA)

一直犹豫稀疏编码怎么写,来来回回看了好几遍的UFLDL.因为这不仅是DL深度学习的重要概念,也是我这段时间一直在研究的stacked ISA 深度特征学习的支柱. 这章将主要介绍一下稀疏编码的主要概念,及主成分分析的方法. 一. 稀疏编码(sparse coding): 稀疏编码算法是一种无监督(unsupervised)学习方法,它用来寻找一组"超完备"基向量来更高效地表示样本数据.(设x的维数为n,则k>n) 超完备基能更有效地找出隐含在输入数据内部的结构与模式.然而,系数a

RCNN,Fast RCNN,Faster RCNN 的前生今世:(2)R-CNN

Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作.作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更带领团队获得终身成就奖,如今供职于Facebook旗下的FAIR. 这篇文章思路简洁,在DPM方法多年平台期后,效果提高显著.包括本文在内的一系列目标检测算法:RCNN,Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码 思想 本文解决了目标检测中的两个关键问题. 问题

初学Direct X(10)—— D3D基础预备知识

初学Direct X(10) -- D3D基础预备知识 1. 像素格式 D3DFMT_X8R8G8B8(F) X:未加使用 8:8位用于显示 B:用于显示蓝色 F:浮点像素类型 以下三个较为常用,使用其他之前务必验证显卡是否支持 D3DFMT_R8G8B8 D3DFMT_X8R8G8B8 D3DFMT_A8R8G8B8 2. 内存池 定义资源缓存的存储位置 可默认宏为:D3DPOOL_DEFAULT 3. 深度缓存 是只含有特定像素的深度信息而不含图像数据的表面,可用于判断物体的前后显示 D3D