Java数据结构和算法(二)——数组

  上篇博客我们简单介绍了数据结构和算法的概念,对此模糊很正常,后面会慢慢通过具体的实例来介绍。本篇博客我们介绍数据结构的鼻祖——数组,可以说数组几乎能表示一切的数据结构,在每一门编程语言中,数组都是重要的数据结构,当然每种语言对数组的实现和处理也不相同,但是本质是都是用来存放数据的的结构,这里我们以Java语言为例,来详细介绍Java语言中数组的用法。

1、Java数组介绍

  在Java中,数组是用来存放同一种数据类型的集合,注意只能存放同一种数据类型。

  ①、数组的声明

  第一种方式:

数据类型 []  数组名称 = new 数据类型[数组长度];

  这里 [] 可以放在数组名称的前面,也可以放在数组名称的后面,我们推荐放在数组名称的前面,这样看上去 数据类型 [] 表示的很明显是一个数组类型,而放在数组名称后面,则不是那么直观。

  第二种方式:

数据类型 [] 数组名称 = {数组元素1,数组元素2,......}

  这种方式声明数组的同时直接给定了数组的元素,数组的大小有给定的数组元素个数决定。

//声明数组1,声明一个长度为3,只能存放int类型的数据
int [] myArray = new int[3];
//声明数组2,声明一个数组元素为 1,2,3的int类型数组
int [] myArray2 = {1,2,3};

  ②、访问数组元素以及给数组元素赋值

  数组是存在下标索引的,通过下标可以获取指定位置的元素,数组小标是从0开始的,也就是说下标0对应的就是数组中第1个元素,可以很方便的对数组中的元素进行存取操作。

  前面数组的声明第二种方式,我们在声明数组的同时,也进行了初始化赋值。

//声明数组,声明一个长度为3,只能存放int类型的数据
int [] myArray = new int[3];
//给myArray第一个元素赋值1
myArray[0] = 1;
//访问myArray的第一个元素
System.out.println(myArray[0]);

  上面的myArray 数组,我们只能赋值三个元素,也就是下标从0到2,如果你访问 myArray[3] ,那么会报数组下标越界异常。

  ③、数组遍历

  数组有个 length 属性,是记录数组的长度的,我们可以利用length属性来遍历数组。

//声明数组2,声明一个数组元素为 1,2,3的int类型数组
int [] myArray2 = {1,2,3};
for(int i = 0 ; i < myArray2.length ; i++){
	System.out.println(myArray2[i]);
}

  

2、用类封装数组实现数据结构

  上一篇博客我们介绍了一个数据结构必须具有以下基本功能:

  ①、如何插入一条新的数据项

  ②、如何寻找某一特定的数据项

  ③、如何删除某一特定的数据项

  ④、如何迭代的访问各个数据项,以便进行显示或其他操作

  而我们知道了数组的简单用法,现在用类的思想封装一个数组,实现上面的四个基本功能:

  ps:假设操作人是不会添加重复元素的,这里没有考虑重复元素,如果添加重复元素了,后面的查找,删除,修改等操作只会对第一次出现的元素有效。

package com.ys.array;

public class MyArray {
	//定义一个数组
	private int [] intArray;
	//定义数组的实际有效长度
	private int elems;
	//定义数组的最大长度
	private int length;

	//默认构造一个长度为50的数组
	public MyArray(){
		elems = 0;
		length = 50;
		intArray = new int[length];
	}
	//构造函数,初始化一个长度为length 的数组
	public MyArray(int length){
		elems = 0;
		this.length = length;
		intArray = new int[length];
	}

	//获取数组的有效长度
	public int getSize(){
		return elems;
	}

	/**
	 * 遍历显示元素
	 */
	public void display(){
		for(int i = 0 ; i < elems ; i++){
			System.out.print(intArray[i]+" ");
		}
		System.out.println();
	}

	/**
	 * 添加元素
	 * @param value,假设操作人是不会添加重复元素的,如果有重复元素对于后面的操作都会有影响。
	 * @return添加成功返回true,添加的元素超过范围了返回false
	 */
	public boolean add(int value){
		if(elems == length){
			return false;
		}else{
			intArray[elems] = value;
			elems++;
		}
		return true;
	}

	/**
	 * 根据下标获取元素
	 * @param i
	 * @return查找下标值在数组下标有效范围内,返回下标所表示的元素
	 * 查找下标超出数组下标有效值,提示访问下标越界
	 */
	public int get(int i){
		if(i<0 || i>elems){
			System.out.println("访问下标越界");
		}
		return intArray[i];
	}
	/**
	 * 查找元素
	 * @param searchValue
	 * @return查找的元素如果存在则返回下标值,如果不存在,返回 -1
	 */
	public int find(int searchValue){
		int i ;
		for(i = 0 ; i < elems ;i++){
			if(intArray[i] == searchValue){
				break;
			}
		}
		if(i == elems){
			return -1;
		}
		return i;
	}
	/**
	 * 删除元素
	 * @param value
	 * @return如果要删除的值不存在,直接返回 false;否则返回true,删除成功
	 */
	public boolean delete(int value){
		int k = find(value);
		if(k == -1){
			return false;
		}else{
			if(k == elems-1){
				elems--;
			}else{
				for(int i = k; i< elems-1 ; i++){
					intArray[i] = intArray[i+1];
					elems--;
				}
			}
			return true;
		}
	}
	/**
	 * 修改数据
	 * @param oldValue原值
	 * @param newValue新值
	 * @return修改成功返回true,修改失败返回false
	 */
	public boolean modify(int oldValue,int newValue){
		int i = find(oldValue);
		if(i == -1){
			System.out.println("需要修改的数据不存在");
			return false;
		}else{
			intArray[i] = newValue;
			return true;
		}
	}

}

  测试:

package com.ys.test;

import com.ys.array.MyArray;

public class MyArrayTest {
	public static void main(String[] args) {
		//创建自定义封装数组结构,数组大小为4
		MyArray array = new MyArray(4);
		//添加4个元素分别是1,2,3,4
		array.add(1);
		array.add(2);
		array.add(3);
		array.add(4);
		//显示数组元素
		array.display();
		//根据下标为0的元素
		int i = array.get(0);
		System.out.println(i);
		//删除4的元素
		array.delete(4);
		//将元素3修改为33
		array.modify(3, 33);
		array.display();
	}

}

  打印结果为:

  

3、分析数组的局限性

  通过上面的代码,我们发现数组是能完成一个数据结构所有的功能的,而且实现起来也不难,那数据既然能完成所有的工作,我们实际应用中为啥不用它来进行所有的数据存储呢?那肯定是有原因呢。

  数组的局限性分析:

  ①、插入快,对于无序数组,上面我们实现的数组就是无序的,即元素没有按照从大到小或者某个特定的顺序排列,只是按照插入的顺序排列。无序数组增加一个元素很简单,只需要在数组末尾添加元素即可,但是有序数组却不一定了,它需要在指定的位置插入。

  ②、查找慢,当然如果根据下标来查找是很快的。但是通常我们都是根据元素值来查找,给定一个元素值,对于无序数组,我们需要从数组第一个元素开始遍历,知道找到那个元素。有序数组通过特定的算法查找的速度会比无需数组快,后面我们会讲各种排序算法。

  ③、删除慢,根据元素值删除,我们要先找到该元素所处的位置,然后将元素后面的值整体向前面移动一个位置。也需要比较多的时间。

  ④、数组一旦创建后,大小就固定了,不能动态扩展数组的元素个数。如果初始化你给一个很大的数组大小,那会白白浪费内存空间,如果给小了,后面数据个数增加了又添加不进去了。

  很显然,数组虽然插入快,但是查找和删除都比较慢,所以我们不会用数组来存储所有的数据,那有没有什么数据结构插入、查找、删除都很快,而且还能动态扩展存储个数大小呢,答案是有的,但是这是建立在很复杂的算法基础上,后面我们也会详细讲解。

4、总结

  本篇博客我们讲解了数组的基本用法,以及用Java语言中的类实现了一个数组的数据结构,但是我们分析该数据结构,发现存在很多性能问题,后面会讲解别的数据结构,看看那些数据结构是如何处理这些问题的。当然在讲解数据结构之前,下篇博客我们会简单的介绍几种常用的排序算法。

时间: 2024-10-14 02:51:26

Java数据结构和算法(二)——数组的相关文章

Java数据结构和算法(二)——数组

数组的用处是什么呢?--当你需要将30个数进行大小排列的时候,用数组这样的数据结构存储是个很好的选择,当你是一个班的班主任的时候,每次要记录那些学生的缺勤次数的时候,数组也是很有用.数组可以进行插入,删除,查找等. 1)创建和内存分配 Java中有两种数据类型,基本类型和对象类型,也有人称为引用类型,Java中把数组当成对象,创建数组时使用new操作符. int array[] = new int[10]; 既然是对象,那么array便是数组的一个引用,根据Java编程思想(一) -- 一切都是

Java数据结构和算法之数组与简单排序

一.数组于简单排序 数组 数组(array)是相同类型变量的集合,可以使用共同的名字引用它.数组可被定义为任何类型,可以是一维或多维.数组中的一个特别要素是通过下标来访问它.数组提供了一种将有联系的信息分组的便利方法. 一维数组 一维数组(one‐dimensional array )实质上是相同类型变量列表.要创建一个数组,你必须首先定义数组变量所需的类型.通用的一维数组的声明格式是: type var‐name[ ]; 获得一个数组需要2步: 第一步,你必须定义变量所需的类型. 第二步,你必

Java数据结构与算法之数组

数组特点: 1.大小固定 2.同一数据类型 3.下标访问 4.数据项可重复 Java数据类型:基本类型(int和double)和对象类型.在许多编程语言中,数组也是基本类型.但在Java中把它们当作对象来对待,因此在创建数组时必须使用new操作符. 有序数组与无序数组比较:最主要的好处是查找速度比无序数组快多了.不好的方面是在插入操作中由于所有靠后的数据都需要移动以疼开空间,所以速度较慢.有序数组和无序数组数据中的删除操作都很慢,这是因为数据项必须向前移动来填补已删除数据项的空洞. 数据访问:从

《Java数据结构和算法》- 数组

Q: 数组的创建? A: Java中有两种数据类型,基本类型和对象类型,在许多编程语言中(甚至面向对象语言C++),数组也是基本类型.但在Java中把数组当做对象来看.因此在创建数组时,必须使用new操作符: int [] objArray = null; // defines a reference to an array objArray = new int[100]; // creates the array, and sets objArray to refer to it 或使用等价的

数据结构和算法二(数组)

一.数组 1.概念 数组是一种线性表数据结构,它用一种连续的内存空间,来存储一组具有相同类型的数据. 线性表:数组.链表.队列.栈等 非线性表:二叉树.堆.图等 2.连续的内存空间和相同类型的数据 优点:具有随机范文的特性,根据下标随机访问的时间复杂度为O(1) 缺点:低效的插入和删除 插入:最好O(1),最坏O(n),平均O(n) 插入:数组若无序,插入新的元素时,可以将第K个位置元素移动到数组末尾,把新的元素插入到第K个位置,此时复杂度为O(1) 删除:最好(1),最坏O(n),平均O(n)

JAVA数据结构与算法-稀疏数组

实际需求 分析问题 因为该二维数组的很多值是默认值0, 因此记录了很多没有意义的数据.->稀疏数组. 1.基本介绍 当一个数据中大部分元素为0,或者同一个值的数组时,可以使用稀疏数组来保存该数组稀疏数组处理方法 1.记录数组一共有几行几列,有多少不同的值 2.把具有不同的值的元素的行列及值记录在一个小规模的数组中,从而去缩小程序规模 稀疏数组说明 2.应用实例 使用稀疏数组,来保留类似前面的二维数组(棋盘.地图等等) 把稀疏数组存盘,并且可以从新恢复原来的二维数组数 整体思路分析 3.加了比较多

Java数据结构和算法(二)树的基本操作

Java数据结构和算法(二)树的基本操作 一.树的遍历 二叉树遍历分为:前序遍历.中序遍历.后序遍历.即父结点的访问顺序 1.1 前序遍历 基本思想:先访问根结点,再先序遍历左子树,最后再先序遍历右子树即根-左-右.图中前序遍历结果是:1,2,4,5,7,8,3,6. // 递归实现前序遍历 public void preOrder() { System.out.printf("%s ", value); if (left != null) { left.preOrder1(); }

Java数据结构与算法之集合

线性表.链表.哈希表是常用的数据结构,在进行Java开发时,SDK已经为我们提供了一系列相应的类来实现基本的数据结构.这些类均在java.util包中. 一.Collection接口 Collection是最基本的集合接口,一个Collection代表一组Object.一些Collection允许相同元素而另一些不行.一些能排序而另一些不行.Java  SDK不提供直接继承自Collection的类,Java  SDK提供的类都是继承自Collection的"子接口"如List和Set

Java数据结构和算法之链表

三.链表 链结点 在链表中,每个数据项都被包含在'点"中,一个点是某个类的对象,这个类可认叫做LINK.因为一个链表中有许多类似的链结点,所以有必要用一个不同于链表的类来表达链结点.每个LINK对象中都包含一个对下一个点引用的字段(通常叫做next)但是本身的对象中有一个字段指向对第一个链结点的引用. 单链表 用一组地址任意的存储单元存放线性表中的数据元素. 以元素(数据元素的映象)  + 指针(指示后继元素存储位置)  = 结点(表示数据元素 或 数据元素的映象) 以"结点的序列&q

java数据结构与算法之树基本概念及二叉树(BinaryTree)的设计与实现

[版权申明]未经博主同意,不允许转载!(请尊重原创,博主保留追究权) http://blog.csdn.net/javazejian/article/details/53727333 出自[zejian的博客] 关联文章: java数据结构与算法之顺序表与链表设计与实现分析 java数据结构与算法之双链表设计与实现 java数据结构与算法之改良顺序表与双链表类似ArrayList和LinkedList(带Iterator迭代器与fast-fail机制) java数据结构与算法之栈(Stack)设