hadoop系列三:mapreduce的使用

转载请在页首明显处注明作者与出处

一:说明

此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等。

当前使用的hadoop版本为2.6.4

上一篇:hadoop系列二:HDFS文件系统的命令及JAVA客户端API

二:wordcount字数统计功能

时间: 2024-10-10 06:11:40

hadoop系列三:mapreduce的使用的相关文章

hadoop系列三:mapreduce的使用(一)

转载请在页首明显处注明作者与出处 http://www.cnblogs.com/zhuxiaojie/p/7224772.html 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6.4 上一篇:hadoop系列二:HDFS文件系统的命令及JAVA客户端API 在下面可以看到统计一本小说(斗破苍穹)哪些词语出现了最多. 本来mapreducer只想写一篇的,可是发现写一篇太长了,所

Hadoop 系列(一)基本概念

Hadoop 系列(一)基本概念 一.Hadoop 简介 Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构,它可以使用户在不了解分布式底层细节的情況下开发分布式程序,充分利用集群的威力进行高速运算和存储. 从其定义就可以发现,它解決了两大问题:大数据存储.大数据分析.也就是 Hadoop 的两大核心:HDFS 和 MapReduce. HDFS(Hadoop Distributed File System) :是可扩展.容错.高性能的分布式文件系统,异步复制,一次写入多次读

【Big Data - Hadoop - MapReduce】初学Hadoop之图解MapReduce与WordCount示例分析

Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS)的开源实现. MapReduce是Google MapReduce的开源实现. HDFS和MapReduce实现是完全分离的,并不是没有HDFS就不能MapReduce运算. 本文主要参考了以下三篇博客学习整理而成. 1. Hadoop示例程序WordCount详解及实例 2. hadoop 学习笔

hadoop系列二:HDFS文件系统的命令及JAVA客户端API

转载请在页首明显处注明作者与出处 http://www.cnblogs.com/zhuxiaojie/p/6391518.html 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6.4 上一篇:hadoop系列一:hadoop集群安装 二:HDFS的shell命令 上一章说完了安装HADOOP集群部分,这一张讲HDFS. 其实基本上操作都是通过JAVA API来操作,所以这里的s

【Hadoop系列】linux SSH原理解析

本文中斜体加粗代表shell指令,操作环境 CentOS6.5 linux root免密码登录链接:[Hadoop系列]linux下 root用户免密码登录远程主机 ssh. linux 非root用户免密码登录:XXXXXXX(暂未写好) Linux下,使用ssh协议登录远程计算机.让我们先来了解下什么是SSH. 一.什么是SSH? 简单说,SSH是一种网络协议,用于计算机之间的加密登录.如果一个用户从本地计算机,使用SSH协议登录另一台远程计算机,我们就可以认为,这种登录是安全的,即使被中途

hadoop系列:zookeeper(3)——zookeeper核心原理(事件)

1.概述 上一篇文章,我们对zookeeper中的数据组织结构.Leader选举原理进行了讲述(http://blog.csdn.net/yinwenjie/article/details/47613309).这篇文章我们紧接上文讲解zookeeper中的事件机制.并通过示例代码告诉读者怎么使用zookeeper中的事件通知器:watcher. 2.zookeeper中的监听机制 按照上文中的讲解,我们知道zookeeper主要是为了统一分布式系统中各个节点的工作状态,在资源冲突的情况下协调提供

每天收获一点点------Hadoop之初始MapReduce

一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来说,自己完完全全实现一个并行计算程序难度太大,而MapReduce就是一种简化并行计算的编程模型,它使得那些没有多有多少并行计算经验的开发人员也可以开发并行应用程序.这也就是MapReduce的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛. 1.1 MapReduce是什么 Hadoop

从Hadoop框架与MapReduce模式中谈海量数据处理(含淘宝技术架构)

从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,认为它们非常是神奇,而神奇的东西常能勾起我的兴趣,在看过介绍它们的文章或论文之后,认为Hadoop是一项富有趣味和挑战性的技术,且它还牵扯到了一个我更加感兴趣的话题:海量数据处理. 由此,近期凡是空暇时,便在看"Hadoop","MapReduce""海量数据处理"这方面的论文.但在看论

初学Hadoop之图解MapReduce与WordCount示例分析

Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS)的开源实现,MapReduce是Google MapReduce的开源实现. HDFS和MapReduce实现是完全分离的,并不是没有HDFS就不能MapReduce运算. 本文主要参考了以下三篇博客学习整理而成. 1.Hadoop示例程序WordCount详解及实例 2.hadoop 学习笔记:m