Linux数据包路由原理、Iptables/netfilter入门学习

相关学习资料

https://www.frozentux.net/iptables-tutorial/cn/iptables-tutorial-cn-1.1.19.html
http://zh.wikipedia.org/wiki/Netfilter
http://www.netfilter.org/projects/iptables/
http://linux.vbird.org/linux_server/0250simple_firewall.php
http://linux.vbird.org/linux_server/0250simple_firewall.php
http://www.vpser.net/security/linux-iptables.html

目录

1. Iptables/Netfilter原理分析
2. Linux数据包路由原理
3. Iptables规则编写原则

1. Iptables/Netfilter原理分析

在文章的最开头,我们首先要明确一个概念,Iptables/Netfilter到底是什么,它们之间的关系是怎样的。

我们可以这样简单地理解:


1. Netfilter是Linux操作系统核心层内部的一个数据包处理模块,它具有如下功能:
1) 网络地址转换(Network Address Translate)
2) 数据包内容修改
3) 以及数据包过滤的防火墙功能
Netfilter平台中制定了五个数据包的挂载点(Hook Point,我们可以理解为回调函数点,数据包到达这些位置的时候会主动调用我们的函数,使我们有机会能在数据包路由的时候有机会改变它们
的方向、内容),这5个挂载点分别是
1) PRE_ROUTING
2) INPUT
3) OUTPUT
4) FORWARD
5) POST_ROUTING
2. Iptables
Netfilter所设置的规则是存放在内核内存中的,Iptables是一个应用层(Ring3)的应用程序,它通过Netfilter放出的接口来对存放在内核内存中的Xtables(Netfilter的配置表)进行修改
(这是一个典型的Ring3和Ring0配合的架构)

Xtables

我们知道Netfilter是负责实际的数据流改变工作的内核模块,而Xtables就是它的规则配置文件,Netfilter依照Xtables的规则来运行,Iptables在应用层负责修改这个规则文件。

Xtables由"表"、"链"、"规则rule"组成


1. Filter(表)
filter表是专门过滤包的,内建三个链,可以毫无问题地对包进行DROP、LOG、ACCEPT和REJECT等操作
1) INPUT(链)
INPUT针对那些目的地是本地的包
1.1) 规则rule
     ..
2) FORWARD(链)
FORWARD链过滤所有不是本地产生的并且目的地不是本地(即本机只是负责转发)的包
2.1) 规则rule
     ..
3) OUTPUT(链)
OUTPUT是用来过滤所有本地生成的包
3.1) 规则rule
     ..
2. Nat(表)
Nat表的主要用处是网络地址转换,即Network Address Translation,缩写为NAT。做过NAT操作的数据包的地址就被改变了,当然这种改变是根据我们的规则进行的。属于一个流的包(因为包
的大小限制导致数据可能会被分成多个数据包)只会经过这个表一次。如果第一个包被允许做NAT或Masqueraded,那么余下的包都会自动地被做相同的操作。也就是说,余下的包不会再通过这个表
,一个一个的被NAT,而是自动地完成
1) PREROUTING(链)
PREROUTING 链的作用是在包刚刚到达防火墙时改变它的目的地址
1.1) 规则rule
     ..
2) INPUT(链)
2.1) 规则rule
     ..
3) OUTPUT(链)
OUTPUT链改变本地产生的包的目的地址
3.1) 规则rule
     ..
4) POSTROUTING(链)
POSTROUTING链在包就要离开防火墙之前改变其源地址。
4.1) 规则rule
     ..
3. Mangle(表)
这个表主要用来mangle数据包。我们可以改变不同的包及包 头的内容,比如 TTL,TOS或MARK。 注意MARK并没有真正地改动数据包,它只是在内核空间为包设了一个标记。防火墙内的其他的规
则或程序(如tc)可以使用这种标记对包进行过滤或高级路由。注意,mangle表不能做任何NAT,它只是改变数据包的TTL,TOS或MARK,而不是其源目地址。NAT必须在nat表中操作的。
1) PREROUTING(链)
PREROUTING在包进入防火墙之后、路由判断之前改变 包
1.1) 规则rule
     ..
2) INPUT(链)
INPUT在包被路由到本地之后,但在用户空间的程序看到它之前改变包
2.1) 规则rule
     ..
3) FORWARD(链)
FORWARD在最初的路由判断之后、最后一次更改包的目的之前mangle包
3.1) 规则rule
     ..
4) OUTPUT(链)
OUTPUT在确定包的目的之前更改数据包
4.1) 规则rule
     ..
5) POSTROUTING(链)
POSTROUTING是在所有路由判断之后
5.1) 规则rule
     ..

Netfilter的Hook点

Netfilter的架构就是在整个网络流程的若干位置放置了一些检测点(HOOK)(或者说是回调函数),而在每个检测点上登记(callback)了一些处理函数进行处理(如包过滤,NAT等,甚至可以是
用户自定义的功能)


1. NF_IP_PRE_ROUTING:
刚刚通过数据链路层解包,进入网络层的数据包通过此点(刚刚进行完版本号,校验
和等检测),目的地址转换在此点进行
2. NF_IP_LOCAL_IN
经路由查找后,送往本机的通过此检查点,INPUT包过滤在此点进行
3. NF_IP_FORWARD
要转发的包通过此检测点,FORWARD包过滤在此点进行
4. NF_IP_POST_ROUTING
所有马上便要通过网络设备出去的包通过此检测点,内置的源地址转换功能(包括地址伪装)在此点进行
5. NF_IP_LOCAL_OUT
本机进程发出的包通过此检测点,OUTPUT包过滤在此点进行

可以看到:

Iptables/Netfilter的工作是针对网络的数据包进行修改的,所以,Iptables/Netfilter在某种程度上可以算是一种网络层的路由器/防火墙

我们可以看到,通过"5个代表不同阶段的Hook点"、"表、链、规则"这种"松耦合"、"规则型"的结构,我们作为管理员可以获得最大程度的控制灵活性、可以有非常巨大的想象空间

Netfilter是由Rusty Russell提出的Linux
2.4内核防火墙框架,该框架既简洁又灵活,可实现安全策略应用中的许多功能,如数据包过滤、数据包处理、地址伪装、透明代理、动态网络地址转换(Network
Address Translation,NAT),以及基于用户及媒体访问控制(Media Access
Control,MAC)地址的过滤和基于状态的过滤、包速率限制等
Iptables/Netfilter的这些规则可以通过灵活组合,形成非常多的功能、涵盖各个方面,这一切都得益于它的优秀设计思想

2.
Linux数据包路由原理

我们已经知道了Netfilter和Iptables的架构和作用,并且学习了控制Netfilter行为的Xtables表的结构,那么这个Xtables表是怎么在内核协议栈的数据包路由中起作用的呢?

网口数据包由底层的网卡NIC接收,通过数据链路层的解包之后(去除数据链路帧头),就进入了"TCP/IP协议栈(本质就是一个处理网络数据包的内核驱动)和Netfilter混合"的"数据包处理流程"中了。

数据包的接收、处理、转发流程构成一个有限状态向量机,经过一些列的内核处理函数、以及Netfilter
Hook点,最后被转发、或者本次上层的应用程序消化掉

从这张图中,我们可以总结出以下规律:


1. 当一个数据包进入网卡时,数据包首先进入PREROUTING链,在PREROUTING链中我们有机会修改数据包的DestIP(目的IP),然后内核的"路由模块"根据"数据包目的IP"以及"内核中的路由表"
判断是否需要转送出去(注意,这个时候数据包的DestIP有可能已经被我们修改过了)
2. 如果数据包就是进入本机的(即数据包的目的IP是本机的网口IP),数据包就会沿着图向下移动,到达INPUT链。数据包到达INPUT链后,任何进程都会收到它
3. 本机上运行的程序也可以发送数据包,这些数据包经过OUTPUT链,然后到达POSTROTING链输出(注意,这个时候数据包的SrcIP有可能已经被我们修改过了)
4. 如果数据包是要转发出去的(即目的IP地址不再当前子网中),且内核允许转发,数据包就会向右移动,经过FORWARD链,然后到达POSTROUTING链输出(选择对应子网的网口发送出去)

我们在写Iptables规则的时候,要时刻牢记这张路由次序图,根据所在Hook点的不同,灵活配置规则

3. Iptables规则编写原则

我们前面说过,使用Iptables是一个非常灵活的过程,我们在写规则的时候,一定要时刻牢记上面的这张"数据包路由图",明白在5个Hook点,3种"表"分别所处的位置,以及结合在这个5个Hook点可以实现的功能,来理解规则。理解规则的原理比强记规则本身效果要好得多

0x1:
提出需求

在正式编写Iptables规则之前,我们一定是有一个实现某个功能、目的的需求,我们必须先将它整理出来,为下一步抽象化作准备,这里我以我项目中的需求为例,大家在自己的实验中可以举一反三


1. 网口at0(10.0.0.1)是一个伪AP的网口,目标客户端连接到伪AP网口at0之后会发起DHCPDISCOVER过程,监听在at0上的DHCPD会进行回应,为客户端分配10.0.0.100的IP地址,并设置客户
端的默认网关为10.0.0.1(即at0的IP地址)、默认DNS服务器为10.0.0.1(即at0的IP地址)
2. 需要将网口at0(10.0.0.1)的入口流量牵引到真正连接外网的网卡接口eth0(192.168.159.254)上,做一个NAT服务
3. 对网口at0(10.0.0.1)的DHCP流量(目的端口67的广播数据包)予以放行,因为我们需要在伪AP所在的服务器上假设DHCP服务器
4. 对网口at0(10.0.0.1)的DNS流量(目的端口53)予以放行,因为我们需要在伪AP所在的服务器上假设DNS服务器

0x2:
逐步抽象化我们的需求

我们根据我们的需求进行抽象化,即用规则来抽象化描述我们的目的,在编写的过程中要注意不同的Hook点所能做的修改是不同的


//开启Linux路由转发开关,由于本机对数据包进行转发
echo "1" > /proc/sys/net/ipv4/ip_forward
//将客户端的HTTP流量进行NAT,改变数据包的SrcIP,注意,是在POSTROUTING(数据包即将发送出去之前进行修改)
iptables -t nat -A POSTROUTING -p tcp -s 10.0.0.0/24 --dport 80 -j SNAT --to-source 192.168.159.254
//将远程WEB服务器返回来的HTTP流量进行NAT,回引回客户端,注意,是在PREROUTING(数据包刚进入协议栈之后马上就修改)
iptables -t nat -A PREROUTING -p tcp -d 192.168.159.254 -j DNAT --to 10.0.0.100

我们在DHCP服务器中指定客户端的默认DNS服务器是10.0.0.1(本机),即伪DNS,但我目前还没有在本机架设DNS,所以目前还需要将53号端口的DNS数据包NAT出去,牵引到谷歌的DNS:
8.8.8.8上去


iptables -t nat -A PREROUTING -p udp -s 10.0.0.0/24 --dport 53 -j DNAT --to 8.8.8.8
iptables -t nat -A POSTROUTING -p udp -s 10.0.0.0/24 --dport 53 -j SNAT --to-source 192.168.159.254

iptables -t nat -A PREROUTING -p udp -d 192.168.159.254 --sport 53 -j DNAT --to 10.0.0.100
iptables -t nat -A POSTROUTING -p udp -s 8.8.8.8 --sport 53 -j SNAT --to-source 10.0.0.1

Copyright (c)
2014 LittleHann All rights reserved

Linux数据包路由原理、Iptables/netfilter入门学习

时间: 2024-10-05 02:52:52

Linux数据包路由原理、Iptables/netfilter入门学习的相关文章

linux下的防火墙(iptables / netfilter)--我的学习记录

什么是防火墙? 工作于主机或网络的边缘,对于进出的报文根据事先定义的规则作检查,将那些能够被规则所匹配到的报文作出相应处理的组件. centos6.6上的防火墙组件: netfilter:过滤器,内核中工作在tcp/ip网络协议栈上的框架 iptables:过滤规则的编写工具,定义的规则通过内核接口直接送至内核,立即生效,但不会永久有效:果期望有永久有效,需要保存至配置文件中,此文件还开机时加载和由用户手工加载:iptables可以自动实现规则语法检查. netfilter在TCP/IP协议栈上

asp.net与MVC4的路由原理和过程【学习笔记】

当IIS收到一个http请求,把请求信息发给对应的HttpModel(实际是实现类UrlRoutingModule),在HttpModel中会注册HttpApplication 类中的PostResolveRequestCache事件,通过此事件来动态选择映射HttpHandler处理程序.通过匹配到的RouteData类的RouteHandler属性得到IRouteHandler对象(MVC4是MvcRouteHandler.asp.net原生的是PageRouteHandler),通过这个对

Linux网络相关命令firewalld和netfilter、iptables 使用(6/22)

iptables和netfilter的关系: netfilter在内核空间的代码根据table中的rules,完成对packet的分析和处置.但是这些table中的具体的防火墙rules,还是必须由系统管理员亲自编写.内核中的netfilter只是提供了一个机制,它并不知道该怎样利用这个机制,写出合适的rules,来实现一个网络防火墙. 那么,系统管理员编写的rules,怎样进入位于内核空间中的netfilter维护的table中去呢?这个任务是由iptables这个工具来完成的. 说白了就是n

Linux网络数据包的揭秘以及常见的调优方式总结

https://mp.weixin.qq.com/s/boRWlx1R7TX0NLuI2sZBfQ 作为业务 SRE,我们所运维的业务,常常以 Linux+TCP/UDP daemon 的形式对外提供服务.SRE 需要对服务器数据包的接收和发送路径有全面的了解,以方便在服务异常时能快速定位问题.以 tcp 协议为例,本文将对 Linux 内核网络数据包接收的路径进行整理和说明,希望对大家所有帮助. Linux 数据包接收路径的整体说明 接收数据包是一个复杂的过程,涉及很多底层的技术细节 , 这里

软件防火墙之iptables/netfilter概念篇(一)

目录 简介 防火墙分类及说明 netfilter钩子 iptables中的表 chains 表链关系 iptables中的规则 Matching targets 简介 在讲防火墙的时候,不得不说的是iptables,本文尽量以通俗易懂的方式描述iptables的相关概念,请耐心的读完. 防火墙分类及说明 从逻辑上讲防火墙分为主机防火墙和网络防火墙两类. 主机防火墙: 针对单个主机进行防护: 网络防火墙:往往处于网络入口或边缘,针对于网络入口进行防护,服务于防火墙背后的本地局域网. 网络防火墙和主

iptables/Netfilter 学习

开始学iptables,因为它是和路由器技术紧密结合在一起的. iptables的命令看起来眼花缭乱,随便找两个: iptables -A FORWARD -p tcp -s 192.168.1.0/24 -d 192.168.1.234 --dport 80 -j ACCEPT iptables -A FORWARD -f -p tcp -s 192.168.1.0/24 -d 192.168.1.234 --dport 80 -j ACCEPT 看了一些博客,还是云里雾里的,所以开始看内核里

iptables从入门到精通

一.主要知识点: 1. Iptables表链结构 2. 数据包过滤流程 3. Iptables书写规则 4. Iptables条件匹配 5. Iptables数据包控制 6. Iptables七层过滤 7. Iptables脚本 二.具体的知识点介绍 1. Iptables表链结构 1)默认的4个规则表 *         raw表:确定是否对该数据包进行状态跟踪 *         mangle表:为数据包设置标记 *         nat表:修改数据包中的源.目标IP地址或端口 *    

Linux TC的ifb原理以及ingress流控

首先贴上Linux内核的ifb.c的文件头注释:     The purpose of this driver is to provide a device that allows    for sharing of resources: 1) qdiscs/policies that are per device as opposed to system wide.    ifb allows for a device which can be redirected to thus provi

SDN Overlay 网络中虚机数据包的转发(1)

在配置了网络虚拟化(Overlay)的网络结构中,处于Overlay网络中的虚机数据包的封装和MAC地址学习和传统物理网络(Underlay)相似又不尽相同.除了我们了解Overlay网络需要借助Underlay网络进行二次封装之外,其MAC地址学习过程也相对要曲折一些.这些MAC地址学习过程取决于多种因素:     1)  虚机是否在同一虚拟子网?    2)  虚机是否在同一虚机网络的不同虚拟子网?    3)  虚机是否运行于同一台物理机?    4)  虚机是否运行在不同的物理机?不同的