POJ——T 2406 Power Strings

http://poj.org/problem?id=2406

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 50627   Accepted: 21118

Description

Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).

Input

Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.

Output

For each s you should print the largest n such that s = a^n for some string a.

Sample Input

abcd
aaaa
ababab
.

Sample Output

1
4
3

Hint

This problem has huge input, use scanf instead of cin to avoid time limit exceed.

Source

Waterloo local 2002.07.01

求最短循环节出现次数

 1 #include <algorithm>
 2 #include <cstring>
 3 #include <cstdio>
 4
 5 using namespace std;
 6
 7 const int N(2333333);
 8 int ans,len,p[N];
 9 char s[N];
10
11 inline void Get_next()
12 {
13     for(int i=2,j=0;i<=len;i++)
14     {
15         for(;s[i]!=s[j+1]&&j>0;) j=p[j];
16         if(s[i]==s[j+1]) j++;
17         p[i]=j;
18     }
19 }
20
21 int main()
22 {
23     for(scanf("%s",s+1);s[1]!=‘.‘;scanf("%s",s+1))
24     {
25         memset(p,0,sizeof(p));
26         len=strlen(s+1);
27         Get_next();
28         int tmp=len-p[len];
29         if(len%tmp) puts("1");
30         else printf("%d\n",len/tmp);
31     }
32     return 0;
33 }
时间: 2024-10-23 02:12:06

POJ——T 2406 Power Strings的相关文章

poj 2406 Power Strings KMP匹配

对于数组s[0~n-1],计算next[0~n](多计算一位). 考虑next[n],假设t=n-next[n],如果n%t==0,则t就是问题的解,否则解为1. 这样考虑: 比如字符串"abababab", a  b a b a b a b * next     -1 0 1 2 3 4 5 6  7 考虑这样的模式匹配,将"abababab#"当做主串,"abababab*"当做模式串,于是进行匹配到n(n=8)时,出现了不匹配: 主串   

POJ 2406 Power Strings KMP运用题解

本题是计算一个字符串能完整分成多少一模一样的子字符串. 原来是使用KMP的next数组计算出来的,一直都觉得是可以利用next数组的,但是自己想了很久没能这么简洁地总结出来,也只能查查他人代码才恍然大悟,原来可以这么简单地区求一个周期字符串的最小周期的. 有某些大牛建议说不应该参考代码或者解题报告,但是这些大牛却没有给出更加有效的学习方法,比如不懂KMP,难倒不应该去看?要自己想出KMP来吗?我看不太可能有哪位大牛可以直接自己"重新创造出KMP"来吧. 好吧,不说"创造KMP

poj 2406 Power Strings(kmp的nxt数组找最小循环节)

题目链接:poj 2406 Power Strings 题意: 给你一个字符串,让你找出这个字符串的最大循环次数,及最小循环节. 题解: 用kmp的nxt数组搞搞,L=j-nxt[j],为前缀j的最小循环节. 1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 #define F(i,a,b) for(int i=(a);i<=(b);++i) 5 using namespace std;

poj 2406 Power Strings 后缀数组解法

连续重复子串问题 poj 2406 Power Strings http://poj.org/problem?id=2406 问一个串能否写成a^n次方这种形式. 虽然这题用kmp做比较合适,但是我们还是用后缀数组做一做,巩固后缀数组的能力. 对于一个串,如果能写出a^n这种形式,我们可以暴力枚举循环节长度L,那么后缀suffix(1)和suffix(1 + L)的LCP应该就是 lenstr - L.如果能满足,那就是,不能,就不是. 这题的话da算法还是超时,等我学了DC3再写上来. 其实这

poj 2406 Power Strings(KMP&amp;思维)

Power Strings Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 31093   Accepted: 12974 Description Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "

poj 2406 Power Strings(KMP求循环次数)

题目链接:http://poj.org/problem?id=2406 Description Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, e

POJ 2406 Power Strings (求字符串循环节出现的次数)

Power Strings Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 44217   Accepted: 18449 Description Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "

poj 2406 Power Strings(kmp循环节)

题目链接:http://poj.org/problem?id=2406 题目大意:如果n%(n-next[n])==0,则存在重复连续子串,长度为n-next[n]. 例如:      a    b    a    b    a    b next:-1   0    0    1    2    3    4 next[n]==4,代表着,前缀abab与后缀abab相等的最长长度,这说明,ab这两个字母为一个循环节,长度=n-next[n]; 1 #include <iostream> 2

POJ 2406 Power Strings

F - Power Strings Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2406 Description Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = &