[转] 先验概率and后验概率

from: https://blog.csdn.net/yangang908/article/details/62215209

and : https://my.oschina.net/xiaoluobutou/blog/688245

先验概率:

事件发生前的预判概率。可以是基于历史数据的统计,可以由背景常识得出,也可以是人的主观观点给出。一般都是单独事件概率,如P(x),P(y)。

后验概率:

事件发生后求的反向条件概率;或者说,基于先验概率求得的反向条件概率。概率形式与条件概率相同。

条件概率:

一个事件发生后另一个事件发生的概率。一般的形式为P(x|y)表示y发生的条件下x发生的概率。

贝叶斯公式:

P(y|x) = ( P(x|y) * P(y) ) / P(x)

这里:

P(y|x) 是后验概率,一般是我们求解的目标。

P(x|y) 是条件概率,又叫似然概率,一般是通过历史数据统计得到。一般不把它叫做先验概率,但从定义上也符合先验定义。

P(y) 是先验概率,一般都是人主观给出的。贝叶斯中的先验概率一般特指它。

P(x) 其实也是先验概率,只是在贝叶斯的很多应用中不重要(因为只要最大后验不求绝对值),需要时往往用全概率公式计算得到。

实例:假设y是文章种类,是一个枚举值;x是向量,表示文章中各个单词的出现次数。

在拥有训练集的情况下,显然除了后验概率P(y|x)中的x来自一篇新文章无法得到,p(x),p(y),p(x|y)都是可以在抽样集合上统计出的。

最大似然理论:

认为P(x|y)最大的类别y,就是当前文档所属类别。即Max P(x|y) = Max p(x1|y)*p(x2|y)*...p(xn|y), for all y

贝叶斯理论:

认为需要增加先验概率p(y),因为有可能某个y是很稀有的类别几千年才看见一次,即使P(x|y)很高,也很可能不是它。

所以y = Max P(x|y) * P(y), 其中p(y)一般是数据集里统计出来的。

从上例来讲,贝叶斯理论显然更合理一些;但实际中很多先验概率是拍脑袋得出的(不准),有些甚至是为了方便求解方便生造出来的(硬凑),那有先验又有什么好处呢?一般攻击贝叶斯都在于这一点。

条件概率公式:

全概率公式:

贝叶斯公式:

给定某系统的若干样本X,计算该系统的参数,即

P(θ) 没有数据支持下,θ发生的概率:先验概率

P(θ|x) 在数据X的支持下,θ发生的概率:后验概率,贝叶斯公式也称为后验公式

p(x|θ) 给定某参数θ的概率分布:似然函数

理解:

1) 教科书上的解释总是太绕了,有一个很好例子:在没有给任何信息的前提下,让猜某人的姓氏。为了猜对概率大一些,你可能会先百度一下中国人口的姓氏排名,发现李姓是中国第一大姓,约占全国汉族人口的7.94%,所以你可能会猜李。也就是李姓出现在的概率最大。

此时李姓的概率即为 先验概率

2) 接着有人给提供了一些跟这个人相关信息,比如:知道他是来自”赵家村“,那这个时候你就知道,他姓赵的概率比较大,就会猜姓赵。

此时P(姓赵|赵家村)这个条件概率,即为 后验概率

3) 似然函数:

由贝叶斯公式带来的思考:

给定某些样本A,在这些样本中计算结论B1,B2....Bi出现的概率,即P(Bi|A),拿概率最大的那个结论B做为样本A最终的结论,也就是说我要求max P(Bi|A),由贝叶斯公式:

max P(Bi|A) = max P(A|Bi)P(Bi)/P(A)

其中 P(A) 即 

又因为样本A给定,对于B1,B2....Bi来说P(A)是相同的,可以把分母去掉:

max P(Bi|A) => max P(A|Bi)P(Bi)

若这些结论B1,B2....Bi的先验概率相等(或者近似),则可以得到:

max P(Bi|A) => max P(A|Bi)P(Bi)=> max P(A|Bi)

最后得到结论,我们求maxP(Bi|A),实际跟求max P(A|Bi)是等价的 而P(A|Bi)就是似然函数

原文地址:https://www.cnblogs.com/Arborday/p/10801675.html

时间: 2024-11-04 03:32:22

[转] 先验概率and后验概率的相关文章

先验概率、后验概率、似然估计,似然函数、贝叶斯公式

联合概率的乘法公式: (如果随机变量是独立的,则)  由乘法公式可得条件概率公式:, , 全概率公式:,其中 (,则,则可轻易推导出上式) 贝叶斯公式: 又名后验概率公式.逆概率公式:后验概率=似然函数×先验概率/证据因子.解释如下,假设我们根据“手臂是否很长”这个随机变量(取值为“手臂很长”或“手臂不长”)的观测样本数据来分析远处一个生物是猩猩类别还是人类类别(假设总共只有这2种类别).我们身处一个人迹罕至的深山老林里,且之前就有很多报道说这里有猩猩出没,所以无需观测样本数据就知道是猩猩的先验

先验概率与后验概率的区别(老迷惑了)

   此为Bayesian先生,敬仰吧,同志们!     先验(A priori:又译:先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”.近代西方传统中,认为先验指无需经验或先于经验获得的知识.它通常与后验知识相比较,后验意指“在经验之后”,需要经验.这一区分来自于中世纪逻辑所区分的两种论证,从原因到结果的论证称为“先验的”,而从结果到原因的论证称为“后验的”. 先验概率是指根据以往经验和分析得到的概率,如全概率公式 中的 ,它往往作为“由因求果”问题中的“因”出现.后验概率是指

先验概率、后验概率以及共轭先验

在贝叶斯学派的观点中,先验概率.后验概率以及共轭分布的概念非常重要.而在机器学习中,我们阅读很多资料时也要频繁地跟他们打交道.所以理清这些概念很有必要. 欢迎关注白马负金羁的博客 http://blog.csdn.net/baimafujinji,为保证公式.图表得以正确显示,强烈建议你从该地址上查看原版博文.本博客主要关注方向包括:数字图像处理.算法设计与分析.数据结构.机器学习.数据挖掘.统计分析方法.自然语言处理. 贝叶斯定理:一个例子 其实我们在之前介绍朴素贝叶斯分类器时就介绍过它,如果

先验概率、后验概率、似然函数与机器学习中概率模型(如逻辑回归)的关系理解

看了好多书籍和博客,讲先验后验.贝叶斯公式.两大学派.概率模型.或是逻辑回归,讲的一个比一个清楚 ,但是联系起来却理解不能 基本概念如下 先验概率:一个事件发生的概率 \[P(y)\] 后验概率:一个事件在另一个事件发生条件下的条件概率 \[P(y|x)\] 贝叶斯公式:联合概率公式直接能推导出来的,代表什么意义?不放在具体问题中代表不了任何意义 \[P(y|x) = \frac{{P(x|y)P(y)}}{{P(x)}}\] 拿一个实际的例子,如果用阴天预测是否下雨 先验概率:下雨的概率 \[

[转] 先验概率与后验概率&&贝叶斯与似然函数

from: https://blog.csdn.net/shenxiaoming77/article/details/77505549 先验概率和后验概率 教科书上的解释总是太绕了.其实举个例子大家就明白这两个东西了. 假设我们出门堵车的可能因素有两个(就是假设而已,别当真):车辆太多和交通事故. 堵车的概率就是先验概率 . 那么如果我们出门之前我们听到新闻说今天路上出了个交通事故,那么我们想算一下堵车的概率,这个就叫做条件概率 .也就是P(堵车|交通事故).这是有因求果. 如果我们已经出了门,

先验概率、后验概率、条件概率

今天看了 Larry Wasserman写的 All of Statistics中的第一章,第一章主要讲概率,其中最主要的就是贝叶斯公式.要了解贝叶斯公式,就得知道全概率公式: 通俗的讲,先验概率就是事情尚未发生前,我们对该事发生概率的估计,例如全概率公式中P(B)就是先验概率,求解方法有很多种,全概率公式是一种,也可以根据经验等,例如抛一枚硬币头向上的概率为0.5. 后验概率则是表示在事情已经发生的条件下,要求该事发生原因是有某个因素引起的可能性的大小. 先验概率是在缺乏某个事实的情况下描述一

【转载】先验概率与后验概率,生成模型与判别模型

[注]事情还没有发生,要求这件事情发生的可能性的大小,是先验概率.事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率 Generative Model 与 Discriminative Model [摘要]    - 生成模型(Generative Model) :无穷样本==>概率密度模型 = 产生模型==>预测- 判别模型(Discriminative Model):有限样本==>判别函数 = 预测模型==>预测 [简介] 简单的说,假设o是观察值,

先验概率和后验概率

个人觉得,对于抽象的问题,先举一个形象的例子,再与抽象的概念相结合,会更方便理解和记忆. 形象例子 [1] : 先验概率:投掷一个骰子,点数为1的概率是1/6,这就是先验概率. 后验概率:吃一道菜,你发现它是酸的,那么你猜这道菜加了醋的可能性为80%,这就是后验概率. 抽象概念 [2] : 先验概率:根据以往经验和分析得到的概率. 后验概率:事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小. Reference: [1] https://www.cnblogs.com/yema

先验概率与后验概率

先验:从原因到结果:后验:从结果到原因. 先验概率:根据以往经验和分析得到的概率.. 后验概率:事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小. 举例理解(1): 先验--根据若干年的统计(经验)或者气候(常识),某地方下雨的概率: 似然--下雨(果)的时候有乌云(因/证据/观察的数据)的概率,即已经有了果,对证据发生的可能性描述: 后验--根据天上有乌云(原因或者证据/观察数据),下雨(结果)的概率: 后验 ~ 先验*似然 : 存在下雨的可能(先验),下雨之前会有乌云(似然