你真的了解字典(Dictionary)吗?

从一道亲身经历的面试题说起

半年前,我参加我现在所在公司的面试,面试官给了一道题,说有一个Y形的链表,知道起始节点,找出交叉节点.

为了便于描述,我把上面的那条线路称为线路1,下面的称为线路2.

思路1

先判断线路1的第一个节点的下级节点是否是线路2的第一个节点,如果不是,再判断是不是线路2的第二个,如果也不是,判断是不是第三个节点,一直到最后一个.
如果第一轮没找到,再按以上思路处理线路一的第二个节点,第三个,第四个... 找到为止.
时间复杂度n2,相信如果我用的是这种方法,可肯定被Pass了.

思路2

首先,我遍历线路2的所有节点,把节点的索引作为key,下级节点索引作为value存入字典中.
然后,遍历线路1中节点,判断字典中是否包含该节点的下级节点索引的key,即dic.ContainsKey((node.next) ,如果包含,那么该下级节点就是交叉节点了.
时间复杂度是n.
那么问题来了,面试官问我了,为什么时间复杂度n呢?你有没有研究过字典的ContainsKey这个方法呢?难道它不是通过遍历内部元素来判断Key是否存在的呢?如果是的话,那时间复杂度还是n2才是呀?
我当时支支吾吾,确实不明白字典的工作原理,厚着面皮说 "不是的,它是通过哈希表直接拿出来的,不用遍历",面试官这边是敷衍过去了,但在我心里却留下了一个谜,已经入职半年多了,欠下的技术债是时候还了.

带着问题来阅读

在看这篇文章前,不知道您使用字典的时候是否有过这样的疑问.

  1. 字典为什么能无限地Add呢?
  2. 从字典中取Item速度非常快,为什么呢?
  3. 初始化字典可以指定字典容量,这是否多余呢?
  4. 字典的桶buckets 长度为素数,为什么呢?

不管您以前有没有在心里问过自己这些问题,也不管您是否已经有了自己得答案,都让我们带着这几个问题接着往下走.

从哈希函数说起

什么是哈希函数?
哈希函数又称散列函数,是一种从任何一种数据中创建小的数字“指纹”的方法。
下面,我们看看JDK中Sting.GetHashCode()方法.

public int hashCode() {
        int h = hash;
 //hash default value : 0
        if (h == 0 && value.length > 0) {
 //value : char storage
            char val[] = value;

            for (int i = 0; i < value.length; i++) {
                h = 31 * h + val[i];
            }
            hash = h;
        }
        return h;
    }

可以看到,无论多长的字符串,最终都会返回一个int值,当哈希函数确定的情况下,任何一个字符串的哈希值都是唯一且确定的.
当然,这里只是找了一种最简单的字符数哈希值求法,理论上只要能把一个对象转换成唯一且确定值的函数,我们都可以把它称之为哈希函数.
这是哈希函数的示意图.

所以,一个对象的哈希值是确定且唯一的!.

字典

如何把哈希值和在集合中我们要的数据的地址关联起来呢?解开这个疑惑前我来看看一个这样不怎么恰当的例子:

有一天,我不小心干了什么坏事,警察叔叔没有逮到我本人,但是他知道是一个叫阿宇的干的,他要找我肯定先去我家,他怎么知道我家的地址呢?他不可能在全中国的家庭一个个去遍历,敲门,问阿宇是你们家的熊孩子吗?

正常应该是通过我的名字,找到我的身份证号码,然后我的身份证上登记着我的家庭地址(我们假设一个名字只能找到一张身份证).

阿宇-----> 身份证(身份证号码,家庭住址)------>我家

我们就可以把由阿宇找到身份证号码的过程,理解为哈希函数,身份证存储着我的号码的同时,也存储着我家的地址,身份证这个角色在字典中就是 bucket,它起一个桥梁作用,当有人要找阿宇家在哪时,直接问它,准备错的,字典中,bucket存储着数据的内存地址(索引),我们要知道key对应的数据的内存地址,问buckets要就对了.

key--->bucket的过程 ~= 阿宇----->身份证 的过程.

警察叔叔通过家庭住址找到了我家之后,我家除了住我,还住着我爸,我妈,他敲门的时候,是我爸开门,于是问我爸爸,阿宇在哪,我爸不知道,我爸便问我妈,儿子在哪?我妈告诉警察叔叔,我在书房呢.很好,警察叔叔就这样把我给逮住了.

字典也是这样,因为key的哈希值范围很大的,我们不可能声明一个这么大的数组作为buckets,这样就太浪费了,我们做法时HashCode%BucketSize作为bucket的索引.

假设Bucket的长度3,那么当key1的HashCode为2时,它数据地址就问buckets2要,当key2的HashCode为5时,它的数据地址也是问buckets2要的.

这就导致同一个bucket可能有多个key对应,即下图中的Johon Smith和Sandra Dee,但是bucket只能记录一个内存地址(索引),也就是警察叔叔通过家庭地址找到我家时,正常来说,只有一个人过来开门,那么,如何找到也在这个家里的我的呢?我爸记录这我妈在厨房,我妈记录着我在书房,就这样,我就被揪出来了,我爸,我妈,我 就是字典中的一个entry.


如果有一天,我妈妈老来得子又生了一个小宝宝,怎么办呢?很简单,我妈记录小宝宝的位置,那么我的只能巴结小宝宝,让小宝宝来记录我的位置了.

既然大的原理明白了,是不是要看看源码,来研究研究代码中字典怎么实现的呢?

DictionaryMini

上次在苏州参加苏州微软技术俱乐部成立大会时,有幸参加了蒋金楠 老师讲的Asp .net core框架解密,蒋老师有句话让我印象很深刻,"学好一门技术的最好的方法,就是模仿它的样子,自己造一个出来"于是他弄了个Asp .net core mini,所以我效仿蒋老师,弄了个DictionaryMini

其源代码我放在了Github仓库,有兴趣的可以看看:https://github.com/liuzhenyulive/DictionaryMini

我觉得字典这几个方面值得了解一下:

  1. 数据存储的最小单元的数据结构
  2. 字典的初始化
  3. 添加新元素
  4. 字典的扩容
  5. 移除元素

字典中还有其他功能,但我相信,只要弄明白的这几个方面的工作原理,我们也就恰中肯綮,他么问题也就迎刃而解了.

数据存储的最小单元(Entry)的数据结构

   private struct Entry
        {
            public int HashCode;
            public int Next;
            public TKey Key;
            public TValue Value;
        }

一个Entry包括该key的HashCode,以及下个Entry的索引Next,该键值对的Key以及数据Vaule.

字典初始化

        private void Initialize(int capacity)
        {
            int size = HashHelpersMini.GetPrime(capacity);
            _buckets = new int[size];
            for (int i = 0; i < _buckets.Length; i++)
            {
                _buckets[i] = -1;
            }

            _entries = new Entry[size];

            _freeList = -1;
        }

字典初始化时,首先要创建int数组,分别作为buckets和entries,其中buckets的index是key的哈希值%size,它的value是数据在entries中的index,我们要取的数据就存在entries中.当某一个bucket没有指向任何entry时,它的value为-1.
另外,很有意思得一点,buckets的数组长度是多少呢?这个我研究了挺久,发现取的是大于capacity的最小质数.

添加新元素

  private void Insert(TKey key, TValue value, bool add)
        {
            if (key == null)
            {
                throw new ArgumentNullException();
            }
            //如果buckets为空,则重新初始化字典.
            if (_buckets == null) Initialize(0);
            //获取传入key的 哈希值
            var hashCode = _comparer.GetHashCode(key);
            //把hashCode%size的值作为目标Bucket的Index.
            var targetBucket = hashCode % _buckets.Length;
            //遍历判断传入的key对应的值是否已经添加字典中
            for (int i = _buckets[targetBucket]; i > 0; i = _entries[i].Next)
            {
                if (_entries[i].HashCode == hashCode && _comparer.Equals(_entries[i].Key, key))
                {
                    //当add为true时,直接抛出异常,告诉给定的值已存在在字典中.
                    if (add)
                    {
                        throw new Exception("给定的关键字已存在!");
                    }
                    //当add为false时,重新赋值并退出.
                    _entries[i].Value = value;
                    return;
                }
            }
            //表示本次存储数据的数据在Entries中的索引
            int index;
            //当有数据被Remove时,freeCount会加1
            if (_freeCount > 0)
            {
                //freeList为上一个移除数据的Entries的索引,这样能尽量地让连续的Entries都利用起来.
                index = _freeList;
                _freeList = _entries[index].Next;
                _freeCount--;
            }
            else
            {
                //当已使用的Entry的数据等于Entries的长度时,说明字典里的数据已经存满了,需要对字典进行扩容,Resize.
                if (_count == _entries.Length)
                {
                    Resize();
                    targetBucket = hashCode % _buckets.Length;
                }
                //默认取未使用的第一个
                index = _count;
                _count++;
            }
            //对Entries进行赋值
            _entries[index].HashCode = hashCode;
            _entries[index].Next = _buckets[targetBucket];
            _entries[index].Key = key;
            _entries[index].Value = value;
            //用buckets来登记数据在Entries中的索引.
            _buckets[targetBucket] = index;
        }

字典的扩容

private void Resize()
        {
            //获取大于当前size的最小质数
            Resize(HashHelpersMini.GetPrime(_count), false);
        }
 private void Resize(int newSize, bool foreNewHashCodes)
        {
            var newBuckets = new int[newSize];
            //把所有buckets设置-1
            for (int i = 0; i < newBuckets.Length; i++) newBuckets[i] = -1;
            var newEntries = new Entry[newSize];
            //把旧的的Enties中的数据拷贝到新的Entires数组中.
            Array.Copy(_entries, 0, newEntries, 0, _count);
            if (foreNewHashCodes)
            {
                for (int i = 0; i < _count; i++)
                {
                    if (newEntries[i].HashCode != -1)
                    {
                        newEntries[i].HashCode = _comparer.GetHashCode(newEntries[i].Key);
                    }
                }
            }
            //重新对新的bucket赋值.
            for (int i = 0; i < _count; i++)
            {
                if (newEntries[i].HashCode > 0)
                {
                    int bucket = newEntries[i].HashCode % newSize;
                    newEntries[i].Next = newBuckets[bucket];
                    newBuckets[bucket] = i;
                }
            }

            _buckets = newBuckets;
            _entries = newEntries;
        }

移除元素

        //通过key移除指定的item
        public bool Remove(TKey key)
        {
            if (key == null)
                throw new Exception();

            if (_buckets != null)
            {
                //获取该key的HashCode
                int hashCode = _comparer.GetHashCode(key);
                //获取bucket的索引
                int bucket = hashCode % _buckets.Length;
                int last = -1;
                for (int i = _buckets[bucket]; i >= 0; last = i, i = _entries[i].Next)
                {
                    if (_entries[i].HashCode == hashCode && _comparer.Equals(_entries[i].Key, key))
                    {
                        if (last < 0)
                        {
                            _buckets[bucket] = _entries[i].Next;
                        }
                        else
                        {
                            _entries[last].Next = _entries[i].Next;
                        }
                        //把要移除的元素置空.
                        _entries[i].HashCode = -1;
                        _entries[i].Next = _freeList;
                        _entries[i].Key = default(TKey);
                        _entries[i].Value = default(TValue);
                        //把该释放的索引记录在freeList中
                        _freeList = i;
                        //把空Entry的数量加1
                        _freeCount++;
                        return true;
                    }
                }
            }

            return false;
        }

我对.Net中的Dictionary的源码进行了精简,做了一个DictionaryMini,有兴趣的可以到我的github查看相关代码.
https://github.com/liuzhenyulive/DictionaryMini

答疑时间

字典为什么能无限地Add呢

向Dictionary中添加元素时,会有一步进行判断字典是否满了,如果满了,会用Resize对字典进行自动地扩容,所以字典不会向数组那样有固定的容量.

为什么从字典中取数据这么快

Key-->HashCode-->HashCode%Size-->Bucket Index-->Bucket-->Entry Index-->Value
整个过程都没有通过遍历来查找数据,一步到下一步的目的性时非常明确的,所以取数据的过程非常快.

初始化字典可以指定字典容量,这是否多余呢

前面说过,当向字典中插入数据时,如果字典已满,会自动地给字典Resize扩容.
扩容的标准时会把大于当前前容量的最小质数作为当前字典的容量,比如,当我们的字典最终存储的元素为15个时,会有这样的一个过程.
new Dictionary()------------------->size:3
字典添加低3个元素---->Resize--->size:7
字典添加低7个元素---->Resize--->size:11
字典添加低11个元素--->Resize--->size:23

可以看到一共进行了三次次Resize,如果我们预先知道最终字典要存储15个元素,那么我们可以用new Dictionary(15)来创建一个字典.

new Dictionary(15)---------->size:23

这样就不需要进行Resize了,可以想象,每次Resize都是消耗一定的时间资源的,需要把OldEnties Copy to NewEntries 所以我们在创建字典时,如果知道字典的中要存储的字典的元素个数,在创建字典时,就传入capacity,免去了中间的Resize进行扩容.

Tips:
即使指定字典容量capacity,后期如果添加的元素超过这个数量,字典也是会自动扩容的.

为什么字典的桶buckets 长度为素数

我们假设有这样的一系列keys,他们的分布范围时K={ 0, 1,..., 100 },又假设某一个buckets的长度m=12,因为3是12的一个因子,当key时3的倍数时,那么targetBucket也将会是3的倍数.

        Keys {0,12,24,36,...}
        TargetBucket将会是0.
        Keys {3,15,27,39,...}
        TargetBucket将会是3.
        Keys {6,18,30,42,...}
        TargetBucket将会是6.
        Keys {9,21,33,45,...}
        TargetBucket将会是9.

如果Key的值是均匀分布的(K中的每一个Key中出现的可能性相同),那么Buckets的Length就没有那么重要了,但是如果Key不是均匀分布呢?
想象一下,如果Key在3的倍数时出现的可能性特别大,其他的基本不出现,TargetBucket那些不是3的倍数的索引就基本不会存储什么数据了,这样就可能有2/3的Bucket空着,数据大量第聚集在0,3,6,9中.
这种情况其实时很常见的。 例如,又一种场景,您根据对象存储在内存中的位置来跟踪对象,如果你的计算机的字节大小是4,而且你的Buckets的长度也为4,那么所有的内存地址都会时4的倍数,也就是说key都是4的倍数,它的HashCode也将会时4的倍数,导致所有的数据都会存储在TargetBucket=0(Key%4=0)的bucket中,而剩下的3/4的Buckets都是空的. 这样数据分布就非常不均匀了.
K中的每一个key如果与Buckets的长度m有公因子,那么该数据就会存储在这个公因子的倍数为索引的bucket中.为了让数据尽可能地均匀地分布在Buckets中,我们要尽量减少m和K中的key的有公因子出现的可能性.那么,把Bucket的长度设为质数就是最佳选择了,因为质数的因子时最少的.这就是为什么每次利用Resize给字典扩容时会取大于当前size的最小质数的原因.
确实,这一块可能有点难以理解,我花了好几天才研究明白,如果小伙伴们没有看懂建议看看这里.
https://cs.stackexchange.com/questions/11029/why-is-it-best-to-use-a-prime-number-as-a-mod-in-a-hashing-function/64191#64191

最后,感谢大家耐着性子把这篇文章看完,欢迎fork DictionaryMini进行进一步的研究,谢谢大家的支持.
https://github.com/liuzhenyulive/DictionaryMini

原文地址:https://www.cnblogs.com/CoderAyu/p/10360608.html

时间: 2024-10-10 05:43:58

你真的了解字典(Dictionary)吗?的相关文章

Python 字典(Dictionary) get()方法

描述 Python 字典(Dictionary) get() 函数返回指定键的值,如果值不在字典中返回默认值. 语法 get()方法语法: dict.get(key, default=None) 参数 key -- 字典中要查找的键. default -- 如果指定键的值不存在时,返回该默认值值. 返回值 返回指定键的值,如果值不在字典中返回默认值None. 实例 以下实例展示了 get()函数的使用方法: #!/usr/bin/python dict = {'Name': 'Zara', 'A

Swift 集合类型(Collection Type) 之 字典(dictionary)(官方文档翻译及总结)

Swift语言提供经典的数组和字典两种集合类型来存储集合数据.数组和字典中存储的数据值类型必须明确.这意味着我们不能把不正确的数据类型插入其中.Swift对显式类型集合的使用确保了我们的代码对工作所需要的类型非常清楚.也让我们在开发中可以早早的找到任何的类型不匹配错误.如果你用变量(var)创建的集合,这些集合就是可变的(增删改).如果用常理创建的,这些集合是不能被操作的. 注意: 如果集合的元素是不变的,那就将集合声明为常量.这样Swift编译器能对你创建的集合做性能优化. 1. 数组(arr

Python 字典(Dictionary) setdefault()方法

描述 Python 字典(Dictionary) setdefault() 函数和get()方法类似, 如果键不已经存在于字典中,将会添加键并将值设为默认值. 语法 setdefault()方法语法: dict.setdefault(key, default=None) 参数 key -- 查找的键值. default -- 键不存在时,设置的默认键值;存在则不设置. 返回值 该方法没有任何返回值. 实例 以下实例展示了 setdefault()函数的使用方法: #!/usr/bin/pytho

索引器、哈希表Hashtabl、字典Dictionary(转)

一.索引器 索引器类似于属性,不同之处在于它们的get访问器采用参数.要声明类或结构上的索引器,使用this关键字. 示例: 索引器示例代码 /// <summary>/// 存储星期几的类.声明了一个get访问器,它接受字符串,并返回相应的整数/// </summary>public class 星期{    public string[] weeks = { "星期日", "星期一", "星期二", "星期三

c# 关于字典dictionary 按时间排序

上文中说到sortedlist 排序是键排序,不符合项目要求问题,接着使用字典dictionary 对value 为时间按照升序排序,问题解决.中间涉及到linq的使用.还有其他的写法,但发现下边的写法最直观也容易理解.var dicSort = from objDic in dic orderby objDic.Value descending select objDic; 这种写法最简单,也容易理解dicsort 目标字典,objdic对象应该是映射的无需定义的对象,dic 是你自己定义的字

C#中数组、集合(ArrayList)、泛型集合List&lt;T&gt;、字典(dictionary&lt;TKey,TValue&gt;)全面对比

为什么把这4个东西放在一起来说,因为c#中的这4个对象都是用来存储数据的集合--. 首先咱们把这4个对象都声明并实例化一下: //数组 string[] m_Str = new string[5]; //集合 ArrayList m_AList = new ArrayList(); //泛型集合 List<int> m_List = new List<int>(); //字典 Dictionary<int, string> m_Dt = new Dictionary&l

C#字典Dictionary排序(顺序、倒序)

这里是针对.NET版本过低的排序方式,没怎么用过,记录一下: 一.创建字典Dictionary 对象 假如 Dictionary 中保存的是一个网站页面流量,key 是网页名称,值value对应的是网页被访问的次数,由于网页的访问次要不断的统计,所以不能用 int 作为 key,只能用网页名称,创建 Dictionary 对象及添加数据代码如下: Dictionary<string, int> dic = new Dictionary<string, int>(); dic.Add

C#创建安全的字典(Dictionary)存储结构

在上面介绍过栈(Stack)的存储结构,接下来介绍另一种存储结构字典(Dictionary). 字典(Dictionary)里面的每一个元素都是一个键值对(由二个元素组成:键和值) 键必须是唯一的,而值不需要唯一的,键和值都可以是任何类型.字典(Dictionary)是常用于查找和排序的列表. 接下来看一下Dictionary的部分方法和类的底层实现代码: 1.Add:将指定的键和值添加到字典中. public void Add(TKey key, TValue value) {        

Python 字典(Dictionary)day11

字典是另一种可变容器模型,且可存储任意类型对象,如其他容器模型. 字典由键和对应值成对组成.字典也被称作关联数组或哈希表.基本语法如下: dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'} 也可如此创建字典: dict1 = { 'abc': 456 };dict2 = { 'abc': 123, 98.6: 37 }; 每个键与值用冒号隔开(:),每对用逗号,每对用逗号分割,整体放在花括号中({}). 键必须独一无二,但值则不必.