P2746 [USACO5.3]校园网Network of Schools tarjan 缩点

题意

给出一个有向图,
A任务:求最少需要从几个点送入信息,使得信息可以通过有向图走遍每一个点
B任务:求最少需要加入几条边,使得有向图是一个强联通分量

思路

任务A,比较好想,可以通过tarjan缩点,求出入度为0的点的个数
任务B
一开始以为任务A,B没有关系
其实是入度为0的点的个数、出度为0的点的个数的最大值。
因为任务B要求在任意学校投放软件使得所有学校都能收到,所以很明显是需要整张图形成一个环,而环中所有节点入度和出度都不为0,所以需要把所有入度和出度的点度数增加。

(注意判断本身就全联通的情况

#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <stack>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
#include   <cassert>

/*

⊂_ヽ
  \\ Λ_Λ  来了老弟
   \(‘?‘)
    > ⌒ヽ
   /   へ\
   /  / \\
   ? ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
‘ノ )  L?

*/

using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue

typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3;

//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl ‘\n‘

#define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);

const ll oo = 1ll<<17;
const ll mos = 0x7FFFFFFF;  //2147483647
const ll nmos = 0x80000000;  //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //18
const int mod = 1e9+7;
const double esp = 1e-8;
const double PI=acos(-1.0);
const double PHI=0.61803399;    //黄金分割点
const double tPHI=0.38196601;

template<typename T>
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<‘0‘||ch>‘9‘) f|=(ch==‘-‘),ch=getchar();
    while (ch>=‘0‘&&ch<=‘9‘) x=x*10+ch-‘0‘,ch=getchar();
    return x=f?-x:x;
}

inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;}

/*-----------------------showtime----------------------*/

            const int maxn = 109;
            vector<int>mp1[maxn],mp2[maxn];

            int dfn[maxn],low[maxn],vis[maxn],col[maxn];
            int dp[maxn][maxn], in[maxn];
            stack<int>st;
            int tot = 0,nn = 0;
            void tarjan(int u){
                dfn[u] = low[u] = ++tot;

                st.push(u);   vis[u] = 1;
                for(int i=0; i<mp1[u].size(); i++){
                    int v = mp1[u][i];
                    if(dfn[v] == 0){
                        tarjan(v);
                        low[u] = min(low[u], low[v]);
                    }
                    else if(vis[v]){
                        low[u] = min(low[u], dfn[v]);
                    }
                }
                if(low[u] == dfn[u]){
                    nn++;
                    while(!st.empty()){
                        int x = st.top(); st.pop();
                        col[x] = nn;
                        vis[x] = 0;
                        if(x == u) break;
                    }
                }
            }   

int main(){
            int n;  scanf("%d", &n);
            rep(i, 1, n){
                int x;  

                while(~scanf("%d", &x) && x) mp1[i].pb(x);

            }

            rep(i, 1, n) if(!dfn[i]) tarjan(i);
            rep(i, 1, n) {
                int u = col[i];
                for(int j=0; j<mp1[i].size(); j++){
                    int v = col[mp1[i][j]];
                    dp[u][v] = 1;
                }
            }
            rep(i, 1, nn) {
                rep(j, 1, nn) {

                    if(i == j) continue;
                    if(dp[i][j]) mp2[i].pb(j), in[j]++;
                }
            }

            int ansa = 0,c1=0,c2=0;
            rep(i, 1, nn) {
                if(in[i] == 0) ansa++,c1++;
                if(mp2[i].size() == 0) c2 ++;
            }
            if(nn == 1) c1 = c2 = 0;
            printf("%d\n%d\n", ansa,max(c1, c2));
            return 0;
}

原文地址:https://www.cnblogs.com/ckxkexing/p/10381290.html

时间: 2024-10-07 00:37:27

P2746 [USACO5.3]校园网Network of Schools tarjan 缩点的相关文章

【luogu2746】 [USACO5.3]校园网Network of Schools [tarjan 缩点]

P2746 [USACO5.3]校园网Network of Schools 任务a:找有多少个入度为0的点 任务b:找出出度为0的个数和入度为0点个数中的较大数 在一个出度为0和另一入度为0的点间连一条边 就可以同时解决两个点 故找出其中较大数 要注意最终缩为一个强连通时要特判 1 #include<bits/stdc++.h> 2 using namespace std; 3 #define ll long long 4 const int N=100+5; 5 int n,in[N],ou

P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools

P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools 题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学校的列表中. 你要写一个程序计算,根据协议,为了让网络中所有的学校都用上新软件,必须接受新软件副本的最少学校数目(子任务 A).更进一步,我们想要确定通过给任意一个学校发送新软件,这个

[tarjan缩点] 洛谷P2746 [USACO5.3]校园网Network of Schools

一开始完全没有搞懂题目的意思就下手,但是居然还AC了两个点? 仔细审视了一下题目的意思,发现题目并不难. 对于第一问,我们只需要求缩点后,入度为 0 的点的数量就可以了. 对于第二问,我们的目标是要求缩点后的所有点互相联通(因为只有这样,任选一个点才能互相到达)我们转换一下含义:缩点后的所有点只有入度和出度都大于0 才为互相联通所以第二问我们只需要对入度为0的点和出度0的点做个比较,谁大取谁的值输出. 坑点:需要特判一下只有一个联通块的时候,否则会出错. #include <cstdio> #

luogu P2746 [USACO5.3]校园网Network of Schools

题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学校的列表中. 你要写一个程序计算,根据协议,为了让网络中所有的学校都用上新软件,必须接受新软件副本的最少学校数目(子任务 A).更进一步,我们想要确定通过给任意一个学校发送新软件,这个软件就会分发到网络中的所有学校.为了完成这个任务,我们可能必须扩展接收学校列表,使其加入新成员.计算最少需要增加几个扩展,使得不论我们给

P2746 [USACO5.3]校园网Network of Schools 强连通

题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学校的列表中. 你要写一个程序计算,根据协议,为了让网络中所有的学校都用上新软件,必须接受新软件副本的最少学校数目(子任务 A).更进一步,我们想要确定通过给任意一个学校发送新软件,这个软件就会分发到网络中的所有学校.为了完成这个任务,我们可能必须扩展接收学校列表,使其加入新成员.计算最少需要增加几个扩展,使得不论我们给

P2746 [USACO5.3]校园网Network of Schools

题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学校的列表中. 你要写一个程序计算,根据协议,为了让网络中所有的学校都用上新软件,必须接受新软件副本的最少学校数目(子任务 A).更进一步,我们想要确定通过给任意一个学校发送新软件,这个软件就会分发到网络中的所有学校.为了完成这个任务,我们可能必须扩展接收学校列表,使其加入新成员.计算最少需要增加几个扩展,使得不论我们给

POJ 1236 Network of Schools (Tarjan + 缩点)

Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12240   Accepted: 4871 Description A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a li

[USACO5.3]校园网Network of Schools

传送门 这道题还是比较容易看出是tarjan的.首先我们知道如果学校之间成环的话那么学校之间一定能到达,直接缩成一个点就好了. 缩完点之后我们得到了一个DAG.之后因为子任务A要求的是最少接受新软件的学校有多少个,可以很容易的想出我们只要给所有入度为0的学校发一份就可以了,因为剩下的必然是可以从其他学校传过来的嘛. 子任务A的答案就是DAG中入度为0的点数. 至于子任务2,我们要求的就是把这个图变为强连通分量至少要加几条边.思考之后发现,一个点如果入度为0,那么它就无法被其他学校传进来,那么就不

luogu2746 [USACO5.3]校园网Network of Schools

题目 题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学校的列表中. 你要写一个程序计算,根据协议,为了让网络中所有的学校都用上新软件,必须接受新软件副本的最少学校数目(子任务 A).更进一步,我们想要确定通过给任意一个学校发送新软件,这个软件就会分发到网络中的所有学校.为了完成这个任务,我们可能必须扩展接收学校列表,使其加入新成员.计算最少需要增加几个扩展,使得不论