P1122 最大子树和 树形dp

  

题目描述

小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题。一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题。于是当日课后,小明就向老师提出了这个问题:

一株奇怪的花卉,上面共连有NN朵花,共有N-1N−1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的。每朵花都有一个“美丽指数”,该数越大说明这朵花越漂亮,也有“美丽指数”为负数的,说明这朵花看着都让人恶心。所谓“修剪”,意为:去掉其中的一条枝条,这样一株花就成了两株,扔掉其中一株。经过一系列“修剪“之后,还剩下最后一株花(也可能是一朵)。老师的任务就是:通过一系列“修剪”(也可以什么“修剪”都不进行),使剩下的那株(那朵)花卉上所有花朵的“美丽指数”之和最大。

老师想了一会儿,给出了正解。小明见问题被轻易攻破,相当不爽,于是又拿来问你。

输入输出格式

输入格式:

第一行一个整数N(1 ≤ N ≤ 16000)N(1≤N≤16000)。表示原始的那株花卉上共NN朵花。

第二行有NN个整数,第II个整数表示第II朵花的美丽指数。

接下来N-1N−1行每行两个整数a,ba,b,表示存在一条连接第aa 朵花和第bb朵花的枝条。

输出格式:

一个数,表示一系列“修剪”之后所能得到的“美丽指数”之和的最大值。保证绝对值不超过21474836472147483647。

输入输出样例

输入样例#1: 复制

7
-1 -1 -1 1 1 1 0
1 4
2 5
3 6
4 7
5 7
6 7

输出样例#1: 复制

3

说明

【数据规模与约定】

对于60\%60%的数据,有N≤1000N≤1000;

对于100\%100%的数据,有N≤16000N≤16000。

因为题目没有要求取的个数  所以直接开一维即可

#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define pb push_back
#define REP(i,N)  for(int i=0;i<(N);i++)
#define CLR(A,v)  memset(A,v,sizeof A)
//////////////////////////////////
#define inf 0x3f3f3f3f
const int N=16000+5;
const int M=50005;
int head[M],pos;
struct Edge
{
    int nex,to,v;
}edge[M];
void add(int a,int b)
{
    edge[++pos].nex=head[a];
    head[a]=pos;
    edge[pos].to=b;
}
int n,m;
int dp[N];
int maxx=-inf;

void dfs(int u,int fa)
{
    for(int i=head[u];i;i=edge[i].nex)
    {
        int v=edge[i].to;
        if(v==fa)continue;
        dfs(v,u);
        dp[u]=max(dp[u],dp[u]+dp[v]);
    }
    maxx=max(maxx,dp[u]);
}

int main()
{
    RI(n);
    rep(i,1,n)
    RI(dp[i]);
    rep(i,1,n-1)
    {
        int a,b;RII(a,b);
        add(a,b);add(b,a);
    }
    dfs(1,0);

    cout<<maxx;
    return 0;
}

原文地址:https://www.cnblogs.com/bxd123/p/10835900.html

时间: 2024-10-09 23:56:05

P1122 最大子树和 树形dp的相关文章

洛谷P1122 最大子树和 树形DP

洛谷P1122 最大子树和一道类似树形DP 的题目 首先我们随意定根 ,假设我们定根为 1, 那么我们设dp[ i ] 表示 在这个整个以1为根的树中 以 i为根的子树 i 这个点强制取到 , 我们再从他的子树中取出一部分出来,最大能够取到的和 我们可知 当 枚举到dp[ u ] 时 ,我们看他的儿子取不取 如果v是它的儿子 若dp[ v ] > 0 那么我们就取 ,否则就不取,取了反而会减少 这样类似最长连续子序列一样就行了 然后类似树形DP 一样从根节点向根扩展就行了 ,也就是dfs下去 然

Luogu P1122 最大子树和 树形DP

题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明就向老师提出了这个问题: 一株奇怪的花卉,上面共连有N 朵花,共有N-1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的.每朵花都有一个"美丽指数",该数越大说明这朵花越漂亮,也有"美丽指数"为负数的,说明这朵花看着都让人恶心.所谓"修剪",意为

HDU 1561 树形DP入门

The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6011    Accepted Submission(s): 3555 Problem Description ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物

P1122 最大子树和(树形dp)

P1122 最大子树和 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明就向老师提出了这个问题: 一株奇怪的花卉,上面共连有N 朵花,共有N-1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的.每朵花都有一个"美丽指数",该数越大说明这朵花越漂亮,也有"美丽指数"为负数的,说明这朵花看着都让人恶心.所谓"

[Luogu P1122]最大子树和 (简单树形DP)

题面 传送门:https://www.luogu.org/problemnew/show/P1122 Solution 这是一道简单的树形DP题. 首先,我们可以转换一下题面,可以发现,题目要求我们求出一颗树上的最大联通子图. 因为我们是在树上取的,实际上就是取一颗子树. 这个就是最基础的树形DP模型了. 我们可以设f[i]表示我们选的子图以i为根所能取的子树的最大值. 转移是: f[i] = beauty[i] + xigema(max(f[j],0)) (也就是一颗树的孩子所能取的子树,如果

洛谷P1122 最大子树和

P1122 最大子树和 题目提供者该用户不存在 标签动态规划树形结构 难度普及/提高- 通过/提交54/100 提交该题 讨论 题解 记录 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明就向老师提出了这个问题: 一株奇怪的花卉,上面共连有N 朵花,共有N-1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的.每朵花都有一个“美丽指数”,该数越

HDU-2196 Computer (树形DP)

最近在看树形DP,这题应该是树形DP的经典题了,写完以后还是有点感觉的.之后看了discuss可以用树分治来做,以后再试一试. 题目大意 找到带权树上离每个点的最远点.︿( ̄︶ ̄)︿ 题解: 对于每一个点的最远点,就是以这个点为根到所有叶子节点的最长距离.但是如果确定根的话,除了根节点外,只能找到每个节点(度数-1)个子树的最大值,剩下一个子树是该节点当前的父亲节点. 所以当前节点的最远点在当前节点子树的所有叶子节点以及父亲节点的最远点上(当父亲节点的最远点不在当前节点的子树上时), 如果父亲节

HDU2196 Computer(树形DP)

和LightOJ1257一样,之前我用了树分治写了.其实原来这题是道经典的树形DP,感觉这个DP不简单.. dp[0][u]表示以u为根的子树中的结点与u的最远距离 dp[1][u]表示以u为根的子树中的结点与u的次远距离 这两个可以一遍dfs通过儿子结点转移得到.显然dp[0][u]就是u的一个可能的答案,即u往下走的最远距离,还缺一部分就是u往上走的最远距离: dp[2][u]表示u往上走的最远距离 对于这个的转移,分两种情况,是这样的: dp[2][v] = max( dp[0][u]+w

CF 219D Choosing Capital for Treeland 树形DP 好题

一个国家,有n座城市,编号为1~n,有n-1条有向边 如果不考虑边的有向性,这n个城市刚好构成一棵树 现在国王要在这n个城市中选择一个作为首都 要求:从首都可以到达这个国家的任何一个城市(边是有向的) 所以一个城市作为首都,可能会有若干边需要改变方向 现在问,选择哪些城市作为首都,需要改变方向的边最少. 输出最少需要改变方向的边数 输出可以作为首都的编号 树形DP 先假定城市1作为首都 令tree(i)表示以i为根的子树 dp[i]表示在tree(i)中,若以i为首都的话,需要改变的边数 第一次