Machine learning system design---Error metrics for skewed(偏斜的) classes

skewed classes

skewed classes: 一种类里面的数量远远高于(或低于)另一个类,即两个极端的情况。

预测cancer的分类模型,如果在test set上只有1%的分类误差的话,乍一看是一个很好的结果,实际上如果我们将所有的y都预测为0的话(即都不为cancer),分类误差为0.5%(因为cancer的比率为0.5%)。error降低了,那这是对算法的一种改进吗?显然不是的。因为后面一种方法实际上什么也没有做(将所有的y=0),不是一种好的机器学习算法。所以这种error metrics对于skewed classes是不行的,那么我们要寻求一种适用于skewed classes上面的error metrics。

precision(查准率) & recall(召回率)

用测试集来评估一个分类模型: 如上图所示,在实际值与预测值上进行一个2*2的分类(假设这是一个2分类问题),将它们分为真阳性(实际是postive,预测也是postive),假阳性(预测是postive,实际是negative),真阴性(实际是negative,预测也是negative),假阴性(预测也是negative,实际是positive)。

precision(查准率):真阳性(True positive)/预测为positive(阳性的)数量(predicted y=1)= 真阳性/(真阳性+假阳性)

recall(召回率): 真阳性(True positive)/实际为positive(阳性的)的数量 (actually have cancer) = 真阳性/(真阳性+假阴性)

这样当我们用precision与recall来评估上一个例子的算法时(将所有的y都预测为0),这样它的true positive 就为0,这样它的precision与recall就都为0,即能知道这不是一个好的算法,所以我们可以通过precision各recall来评估一个算法是否好。也给了我们一个更直接的方法来评估模型的好坏。

我们经常使用y=1(不是y=0)来做为很少(rare)出现的那个类(如为cancer的类),即做为要检测出来的类。

总结

  1. 我们使用precision和recall来衡量算法的好坏,这样当我们遇到skewed classes时,即使我们将所有的预测值都设为0或者1时,它不会有高的precison和recall
  2. 当我们算法的precision和recall很好时,我们可以确信地说我们的算法表现很好(即使我们遇到了skewed classes)
  3. 当我们遇到skewed classes问题时,我们使用precision和recall比用的误差率或者准确率能更好地来衡量算法的好坏
时间: 2024-10-10 08:42:50

Machine learning system design---Error metrics for skewed(偏斜的) classes的相关文章

斯坦福大学公开课机器学习:machine learning system design | error metrics for skewed classes(偏斜类问题的定义以及针对偏斜类问题的评估度量值:查准率(precision)和召回率(recall))

上篇文章提到了误差分析以及设定误差度量值的重要性.那就是设定某个实数来评估学习算法并衡量它的表现.有了算法的评估和误差度量值,有一件重要的事情要注意,就是使用一个合适的误差度量值,有时会对学习算法造成非常微妙的影响.这类问题就是偏斜类(skewed classes)的问题.什么意思呢.以癌症分类为例,我们拥有内科病人的特征变量,并希望知道他们是否患有癌症,这就像恶性与良性肿瘤的分类问题.假设y=1表示患者患有癌症,假设y=0表示没有得癌症,然后训练逻辑回归模型.假设用测试集检验了这个分类模型,并

Stanford机器学习笔记-7. Machine Learning System Design

7 Machine Learning System Design Content 7 Machine Learning System Design 7.1 Prioritizing What to Work On 7.2 Error Analysis 7.3 Error Metrics for Skewed Classed 7.3.1 Precision/Recall 7.3.2 Trading off precision and recall: F1 Score 7.4 Data for ma

Machine Learning - XI. Machine Learning System Design

http://blog.csdn.net/pipisorry/article/details/44119187 机器学习Machine Learning - Andrew NG courses学习笔记 Machine Learning System Design机器学习系统设计 Prioritizing What to Work On优先考虑做什么 Error Analysis 错误分析 Error Metrics for Skewed Classes有偏类的错误度量 Trading Off P

斯坦福第十一课:机器学习系统的设计(Machine Learning System Design)

11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频中,我将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器 学习系统时,你将遇到的主要问题.同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议.下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的 这些东西是非常有用的,可能在构建大型的机器学习系统时,节省大量的时间. 本周以一个垃圾邮件

Ng第十一课:机器学习系统的设计(Machine Learning System Design)

11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器学习系统时,将遇到的主要问题.同时会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议.下面的课程讲的东西数学性不强,但是非常有用的,可能在构建大型的机器学习系统时,节省大量的时间. 本周以一个垃圾邮件分类器算法为例进行讨论. 为了解决这样一个问题,首先

机器学习系统设计 ---- Machine Learning System Design

构建一个机器学习算法的过程: 快速构建一个简单的算法,并用交叉验证集来测试这个算法的性能. 画出学习曲线,检查算法是否有高方差或高偏差的问题,从而选择相应的应对方法. 误差分析,查看使算法出现误差的实例,分析这些实例是否有某种系统化的趋势. 评估算法性能 偏斜类(skewed classes):训练集中的大多数实例属于一类,其他类占得很少或没有. 类偏斜的情况下我们就不能单纯使用误差来评判算法的效果.应使用新的评估度量值. TP:预测为真,实际为真 FP:预测为真,实际为假 FN:预测为假,实际

斯坦福大学公开课机器学习:machine learning system design | trading off precision and recall(F score公式的提出:学习算法中如何平衡(取舍)查准率和召回率的数值)

一般来说,召回率和查准率的关系如下:1.如果需要很高的置信度的话,查准率会很高,相应的召回率很低:2.如果需要避免假阴性的话,召回率会很高,查准率会很低.下图右边显示的是召回率和查准率在一个学习算法中的关系.值得注意的是,没有一个学习算法是能同时保证高查准率和召回率的,要高查准率还是高召回率,取决于自己的需求.此外,查准率和召回率之间的关系曲线可以是多样性,不一定是图示的形状. 如何取舍查准率和召回率数值: 一开始提出来的算法有取查准率和召回率的平均值,如下面的公式average=(P+R)/2

斯坦福大学公开课机器学习:machine learning system design | data for machine learning(数据量很大时,学习算法表现比较好的原理)

下图为四种不同算法应用在不同大小数据量时的表现,可以看出,随着数据量的增大,算法的表现趋于接近.即不管多么糟糕的算法,数据量非常大的时候,算法表现也可以很好. 数据量很大时,学习算法表现比较好的原理: 使用比较大的训练集(意味着不可能过拟合),此时方差会比较低:此时,如果在逻辑回归或者线性回归模型中加入很多参数以及层数的话,则偏差会很低.综合起来,这会是一个很好的高性能的学习算法. 原文地址:https://www.cnblogs.com/chenwenyan/p/8326027.html

Advice for Applying Machine Learning & Machine Learning System Design----- Stanford Machine Learning(by Andrew NG)Course Notes

Adviceforapplyingmachinelearning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来我们要做的是高效地利用这些算法去解决实际问题,尽量不要把时间浪费在没有多大意义的尝试上,Advice for applying machine learning & Machinelearning system design 这两课介绍的就是在设计机器学习系统的时候,我们该怎么做? 假设我们实现了一个正则化的线性回