技术调研参考——业界开源实时流处理系统小结

这里对目前业界开源的一些实时流处理系统做一次小结,作为日后进行技术调研的参考资料。

S4

S4(Simple Scalable Streaming System)是Yahoo最新发布的一个开源流计算平台,它是一个通用的、分布式的、可扩展性良好、具有分区容错能力、支持插件的分布式流计算平台,在该平台上程序员可以很方便地开发面向无界不间断流数据处理的应用,开发语言为Java。

项目链接:http://incubator.apache.org/s4/(注:S4 0.5.0已支持TCP链接及状态恢复等特性)

Storm

Storm是Twitter开源的分布式实时计算系统,Storm通过简单的API使开发者可以可靠地处理无界持续的流数据,进行实时计算,开发语言为Clojure和Java,非JVM语言可以通过stdin/stdout以JSON格式协议与Storm进行通信。Storm的应用场景很多:实时分析、在线机器学习、持续计算、分布式RPC、ETL处理,等等。

项目链接:http://storm-project.net

StreamBase

StreamBase是一个关于复杂事件处理(CEP)、事件流处理的平台。其本身是商业应用软件,但提供了Developer Edition,开发语言为Java。

项目链接:http://www.streambase.com

HStreaming

HStreaming构建在Hadoop之上,可以和Hadoop及其生态系统紧密结合起来提供实时流计算服务。这使得HStreaming的用户可以在同一个生态系统中分析处理大数据,开发语言为Java。

项目链接:http://www.hstreaming.com

Esper & NEsper

Esper是专门进行复杂事件处理(CEP)的流处理平台,Java版本为Esper,.Net版本为NEsper。Esper & NEsper可以方便开发者快速开发部署处理大容量消息和事件的应用系统,不论是历史的还是实时的消息。

项目链接:http://esper.codehaus.org

Kafka

Kafka是Linkedin于2010年12月份开源的高吞吐、基于Pub-Sub的分布式消息系统,主要用于处理活跃的流式数据,开发语言为Scala。

项目链接:http://incubator.apache.org/kafka

Scribe

Scribe是Facebook开源的日志收集系统,开发语言为C,通过Thrift可以支持多种常用客户端语言,在Facebook内部已经得到大量的应用。它能够从各种日志源上收集日志,存储到一个中央存储系统(可以是NFS,分布式文件系统等)上,以便于进行集中统计分析处理。它为日志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案。Scribe通常与Hadoop结合使用,Scribe用于向HDFS中push日志,而Hadoop通过MapReduce作业进行定期处理。

项目链接:http://github.com/facebook/scribe

Flume

Flume是Cloudera提供的一个分布式、可靠的、高可用的日志收集系统,用于收集、聚合以及移动大量日志数据,开发语言为Java。Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接收方(可定制)的能力。

项目链接:http://incubator.apache.org/flume

时间: 2024-10-08 11:13:20

技术调研参考——业界开源实时流处理系统小结的相关文章

[转帖]实时流处理系统反压机制(BackPressure)综述

实时流处理系统反压机制(BackPressure)综述 https://blog.csdn.net/qq_21125183/article/details/80708142 2018-06-15 19:05:37 MasterT-J 阅读数 4808更多 分类专栏: 实时流处理 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_21125183/article/details/8070

centos7搭建ELK开源实时日志分析系统

Elasticsearch 是个开源分布式搜索引擎它的特点有分布式零配置自动发现索引自动分片索引副本机制 restful 风格接口多数据源自动搜索负载等. Logstash 是一个完全开源的工具他可以对你的日志进行收集.分析并将其存储供以后使用如搜索. kibana 也是一个开源和免费的工具他 Kibana 可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面可以帮助您汇总.分析和搜索重要数据日志. 日志从客户端到服务端处理后在传递给客户的数据流流向如下

.Spark Streaming(上)--实时流计算Spark Streaming原理介

Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP

Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming介绍

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送–Spark入门实战系列>获取 1 Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理

Twitter的流处理器系统Heron——升级的storm,可以利用mesos来进行资源调度

2011年,Twitter发布了开源的分布式流计算系统Storm.四年后,随着用户数量的急剧增加,Twitter每天要处理的事件已经增加到十亿以上.Storm系统应对如此庞大而复杂多样的流数据变得十分困难.为了解决该问题,Twitter公司近期开发了一套全新的流处理系统--Heron.近日,Twitter公司在SIGMOD 2015会议上对Heron进行了介绍. 据Twitter公司的技术经理Karthik Ramasamy表示,Twitter公司之前对Storm所存在的问题以及新平台的功能需求

Storm分布式实时流计算框架相关技术总结

Storm分布式实时流计算框架相关技术总结 Storm作为一个开源的分布式实时流计算框架,其内部实现使用了一些常用的技术,这里是对这些技术及其在Storm中作用的概括介绍.以此为基础,后续再深入了解Storm的内部实现细节. 1. Zookeeper集群 Zookeeper是一个针对大型分布式系统的可靠协调服务系统,其采用类似Unix文件系统树形层次结构的数据模型(如:/zoo/a,/zoo/b),节点内可存储少量数据(<1M,当节点存储大数据量时,实际应用中可能出现同步问题). Zookeep

实时计算,流数据处理系统简介与简单分析

转自:http://www.csdn.net/article/2014-06-12/2820196-Storm 摘要:实时计算一般都是针对海量数据进行的,一般要求为秒级.实时计算主要分为两块:数据的实时入库.数据的实时计算.今天这篇文章详细介绍了实时计算,流数据处理系统简介与简单分析. 编者按:互联网领域的实时计算一般都是针对海量数据进行的,除了像非实时计算的需求(如计算结果准确)以外,实时计算最重要的一个需求是能够实时响应计算结果,一般要求为秒级.实时计算的今天,业界都没有一个准确的定义,什么

Nginx-rtmp 直播媒体实时流实现

0. 前言 这段时间在搭建一个IPCamera项目服务器.视频点对点通话,客户端会查看设备端的音视频实时流.为了省流量,是通过P2P进行穿透.但是由于NAT设备的原因和IPV4的枯竭.有些设备是无法进行点对点传输实时流.所以需要进行服务器转发.这里为了快速实现原型,同时参考现在主流的流媒体协议.发现很多使用的是RTMP协议. 下图是总体设计图,为了整合多平台,会自建RTMP流媒体服务器和使用云厂商SaaS的RTMP流媒体服务.但是由于有时候会传输一些非流媒体数据,需要传输一些二进制文件,所以会需

文本结构化(信息抽取)技术调研与综述

文本结构化技术调研 1. 引言 文本数据一般由有序的段落.句子.单词文本流组成,而这种形式的文本通常是非结构化的,并不是结构化的表格数据,文本的特征也与噪声混杂在一起,很难直接提取出特征,也就没有办法将机器学习方法应用在原始的非结构化文本数据中.因此,我们需要一种文本结构化技术,能够自动化处理非结构化文本,并且在不损失重要信息的情况下,用结构化数据提取出该文本的主要信息. 出于不同的目的,一般采用信息抽取与特征工程的方式实现文本结构化技术,但是这两种方法在本质上属于不同类型的方法,信息抽取一般是