设$f(x)$为$R$上的正值连续函数,若对$\forall t\in R$,有$\int_R$$e^{-\mid t-x\mid}f(x)dx$$\leq$$1$,证明:对$\forall a,b \in R(a<b)$,有$\int_a^bf(x)dx$$\leq$$\frac{b-a}{2}+1$
证明:记$F(t)=$$\int_a^b$$e^{-\mid t-x\mid}f(x)dx$,从而$\int_a^bF(t)dt$$=$$\int_a^bf(x)dx$$\int_a^b$$e^{-\mid t-x\mid}f(x)dt$;
也即$\int_a^bF(t)dt$$=$$\int_a^bf(x)[2-e^{a-x}-e^{x-b}]dx$;
注意到$F(t)$$\leq1$,从而$\int_a^bf(x)[2-e^{a-x}-e^{x-b}]dx$$\leq$$b-a$;
整理得:$\int_a^bf(x)dx$$\leq$$\frac{b-a}{2}$$+$$\frac{1}{2}$$\int_a^b$$e^{-\mid a-x\mid}f(x)dx$$+$$\frac{1}{2}$$\int_a^b$$e^{-\mid b-x\mid}f(x)dx$;
即$\int_a^bf(x)dx$$\leq$$\frac{b-a}{2}+1$得证
时间: 2024-10-10 15:17:30