poll 使用示例

poll()函数:

这个函数是某些Unix系统提供的用于执行与select()函数同等功能的函数,下面是这个函数的声明:

#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

参数说明:

fds:是一个struct pollfd结构类型的数组,用于存放需要检测其状态的Socket描述符;每当调用这个函数之后,系统不会清空这个数组,操作起来比较方便;特别是对于socket连接比较多的情况下,在一定程度上可以提高处理的效率;这一点与select()函数不同,调用select()函数之后,select()函数会清空它所检测的socket描述符集合,导致每次调用select()之前都必须把socket描述符重新加入到待检测的集合中;因此,select()函数适合于只检测一个socket描述符的情况,而poll()函数适合于大量socket描述符的情况;

nfds:nfds_t类型的参数,用于标记数组fds中的结构体元素的总数量;

timeout:是poll函数调用阻塞的时间,单位:毫秒;

返回值:

>0:数组fds中准备好读、写或出错状态的那些socket描述符的总数量;

==0:数组fds中没有任何socket描述符准备好读、写,或出错;此时poll超时,超时时间是timeout毫秒;换句话说,如果所检测的socket描述符上没有任何事件发生的话,那么poll()函数会阻塞timeout所指定的毫秒时间长度之后返回,如果timeout==0,那么poll() 函数立即返回而不阻塞,如果timeout==INFTIM,那么poll() 函数会一直阻塞下去,直到所检测的socket描述符上的感兴趣的事件发生是才返回,如果感兴趣的事件永远不发生,那么poll()就会永远阻塞下去;

-1: poll函数调用失败,同时会自动设置全局变量errno;

pollfd的结构:

struct pollfd {
int fd; /*文件描述符*/
short events; /* 等待的需要测试事件 */
short revents; /* 实际发生了的事件,也就是返回结果 */
};

使用poll来实现TCP回射服务器

例子代码源自UNIX网络编程tcpcliserv/tcpcliservpoll01.c

/* include fig01 */
#include  <unistd.h>
#include  <sys/types.h>       /* basic system data types */
#include  <sys/socket.h>      /* basic socket definitions */
#include  <netinet/in.h>      /* sockaddr_in{} and other Internet defns */
#include  <arpa/inet.h>       /* inet(3) functions */

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

#include <poll.h> /* poll function */
#include <limits.h>

#define MAXLINE 10240

#ifndef OPEN_MAX
#define OPEN_MAX 40960
#endif

int
main(int argc, char **argv)
{
	int					i, maxi, listenfd, connfd, sockfd;
	int					nready;
	ssize_t				n;
	char				buf[MAXLINE];
	socklen_t			clilen;
	struct pollfd		client[OPEN_MAX];
	struct sockaddr_in	cliaddr, servaddr;

	listenfd = Socket(AF_INET, SOCK_STREAM, 0);//监听fd

	bzero(&servaddr, sizeof(servaddr));
	servaddr.sin_family      = AF_INET;
	servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
	servaddr.sin_port        = htons(SERV_PORT);

	Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

	Listen(listenfd, LISTENQ);

	client[0].fd = listenfd;
	client[0].events = POLLRDNORM;
	for (i = 1; i < OPEN_MAX; i++)
		client[i].fd = -1;		/* -1 indicates available entry */
	maxi = 0;					/* max index into client[] array */
/* end fig01 */

/* include fig02 */
	for ( ; ; ) {
		nready = Poll(client, maxi+1, -1);//maxi表示client数组大小

		if (client[0].revents & POLLRDNORM) {	/*
			*new client connection
			*每次有新连接都会执行这个if循环,然后将新添加的链接调用accept来接受链接
			*/
			clilen = sizeof(cliaddr);
			connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);//accept函数返回了一个socketfd,
#ifdef	NOTDEF
			printf("new client: %s\n", Sock_ntop((SA *) &cliaddr, clilen));
#endif

			for (i = 1; i < OPEN_MAX; i++)//监视connfd是否可读、可写
				if (client[i].fd < 0) {
					client[i].fd = connfd;	/* save descriptor */
					break;
				}
			if (i == OPEN_MAX)
				err_quit("too many clients");

			client[i].events = POLLRDNORM;//检测connfd是否可读
			if (i > maxi)
				maxi = i;				/* max index in client[] array */

			if (--nready <= 0)/*如果除了listen的client[0]被激活,其他事件没有没有被激活则nready是1
				*自减1后,为0,表示此次处理poll结束。继续下次监视。
				*/
				continue;				/* no more readable descriptors */
		}

		for (i = 1; i <= maxi; i++) {	/* 第0个元素是处理listen的,处理其余accept的所有可读的connfd */
			if ( (sockfd = client[i].fd) < 0)//无效的fd
				continue;
			if (client[i].revents & (POLLRDNORM | POLLERR)) {//处理可读的connfd
				if ( (n = read(sockfd, buf, MAXLINE)) < 0) {
					if (errno == ECONNRESET) {
							/*4connection reset by client */
#ifdef	NOTDEF
						printf("client[%d] aborted connection\n", i);
#endif
						Close(sockfd);
						client[i].fd = -1;
					} else
						err_sys("read error");
				} else if (n == 0) {
						/*4connection closed by client */
#ifdef	NOTDEF
					printf("client[%d] closed connection\n", i);
#endif
					Close(sockfd);
					client[i].fd = -1;
				} else
					Writen(sockfd, buf, n);

				if (--nready <= 0)
					break;				/* no more readable descriptors */
			}
		}
	}
}
/* end fig02 */
 
时间: 2024-08-06 02:41:29

poll 使用示例的相关文章

IO并发

IO分类 IO分类:阻塞IO,非阻塞IO,IO多路复用,异步IO等 阻塞IO 定义:在执行IO操作时如果执行条件不满足则阻塞.阻塞IO是IO的默认形态. 效率:阻塞IO是效率很低的一种IO.但是由于逻辑简单所以是默认IO行为. 阻塞情况: 因为某种执行条件没有满足造成的函数阻塞 如:accept        input        recv等 处理IO的时间较长产生的阻塞状态 如:网络传输,大文件读写等 非阻塞IO 定义:通过修改IO属性行为,使原本阻塞的IO变为非阻塞的状态 设置套接字为非

IO多路复用:select、poll、epoll示例

一.IO多路复用 所谓IO多路复用,就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作. Linux支持IO多路复用的系统调用有select.poll.epoll,这些调用都是内核级别的.但select.poll.epoll本质上都是同步I/O,先是block住等待就绪的socket,再是block住将数据从内核拷贝到用户内存. 当然select.poll.epoll之间也是有区别的,如下表: \ select poll e

Linux C - poll示例

Poll就是监控文件是否可读的一种机制,作用与select一样. 应用程序的调用函数如下: int poll(struct pollfd *fds,nfds_t nfds, int timeout); Poll机制会判断fds中的文件是否可读,如果可读则会立即返回,返回的值就是可读fd的数量,如果不可读,那么就进程就会休眠timeout这么长的时间,然后再来判断是否有文件可读,如果有,返回fd的数量,如果没有,则返回0. 使用非阻塞I/O的应用程序通常会使用select()和poll()系统调用

socket编程以及select、epoll、poll示例详解

socket编程socket这个词可以表示很多概念,在TCP/IP协议中“IP地址 + TCP或UDP端口号”唯一标识网络通讯中的一个进程,“IP + 端口号”就称为socket.在TCP协议中,建立连接的两个进程各自有一个socket来标识,那么两个socket组成的socket pair就唯一标识一个连接. 预备知识 网络字节序:内存中多字节数据相对于内存地址有大端小端之分,磁盘文件中的多字节数据相对于文件中的偏移地址也有大端小端之分.网络数据流同样有大端小端之分,所以发送主机通常将发送缓冲

多路I/O poll编写服务器

一.poll (多路复用I/O poll) 和select()函数一样,poll函数也可以执行多路I/O复用,但poll与select相比,没有像select那样构建结构体的三个数组(针对每一个条件分别有一个数组:读事件,写事件,异常),然后检查从0到nfds每个文件描述符.poll采用了一个单独的结构体pollfd数组,由fds指针指向这个组.pollfd结构体定义如下: #include <sys/poll.h> struct pollfd {int fd; //文件描述符short ev

HMM的维特比算法简单示例

今天读了一位大牛的关于HMM的技术博客,读完之后,写了一个关于维特比算法的简单示例,用scala和java语言混合编写的.现在上传之. package com.txq.hmm import java.utilimport scala.collection._ /** * HMM维特比算法,根据显示状态链条估计隐式链条 * @param states 隐式states * @param observations 显式states * @param start_probability 初始概率向量

Java 集合系列05之 LinkedList详细介绍(源码解析)和使用示例

概要  前面,我们已经学习了ArrayList,并了解了fail-fast机制.这一章我们接着学习List的实现类——LinkedList.和学习ArrayList一样,接下来呢,我们先对LinkedList有个整体认识,然后再学习它的源码:最后再通过实例来学会使用LinkedList.内容包括:第1部分 LinkedList介绍第2部分 LinkedList数据结构第3部分 LinkedList源码解析(基于JDK1.6.0_45)第4部分 LinkedList遍历方式第5部分 LinkedL

Java 集合系列 04 LinkedList详细介绍(源码解析)和使用示例

java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java 集合系列 04 LinkedList详细介绍(源码解析)和使用示例 概要  和学习ArrayList一样,接下来呢,我们先对LinkedList有个整体认识,然后再学习它的源码:最后再通过实例来学会使用LinkedList.内容包括:第1部分 LinkedList介绍第2部分 LinkedList数

Linux下的socket编程实践(八) Select的限制和poll(并发的初步知识)

select的限制 用select实现的并发服务器,能达到的并发数一般受两方面限制: 1)一个进程能打开的最大文件描述符限制.这可以通过调整内核参数来改变.可以通过ulimit -n(number)来调整或者使用setrlimit函数设置(需要root权限),但一个系统所能打开的最大数也是有限的,跟内存大小有关,可以通过cat /proc/sys/fs/file-max 查看. 2)select中的fd_set集合容量的限制(FD_SETSIZE,一般为1024),这需要重新编译内核才能改变.