TMF大数据分析指南 Unleashing Business Value in Big Data(二)

前言

此文节选自TMF Big Data Analytics Guidebook。

TMF文档版权信息 

Copyright © TeleManagement Forum 2013. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to TM FORUM, except as needed for the purpose of developing any document or deliverable produced by a TM FORUM Collaboration Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM IPR Policy, must be followed) or as required to translate it into languages other than English.

数据存储

这层提供了大数据平台所有数据的存储,包括装载后的原始数据、中间数据以及参考模型中其它层处理后的数据。

数据存储层具备处理海量数据所需的可扩展性和灵活性,数据存储层可以位于:

  • 本地,例如CSP的内部数据中心;
  • 私有云或公有云。

数据存储层与其它层之间存在交互,可以视为“数据总线”。

数据存储层存储的数据有:

  • 非结构化数据
  • 结构化数据
  • 半结构化数据

在大数据分析平台的部署场景中,数据存储很少只采用一种技术,大多数情况下会组合使用不同的存储和处理技术,从而完成业务实现和系统优化。例如,一些特定的技术用来缓存、汇总和优化数据,从而这些数据易于被其它层的功能模块有效地处理。

大数据存储的一个典型用法是采用NoSQL数据库和大规模并行处理技术(如MapReduce)实现大数据的快速存储,然后可以查询部分数据,或者将其导出至传统的关系型数据库(RDBMS),便于BI或者报表工具处理和呈现。

数据治理

大数据对于企业和政府部门的挑战不仅在于如何管理客户和公民数据,还在于如何应对安全领域的问题,因此,需要新的技术和方法解决这些新生的威胁。TMF研究报告表明,建立客户的信任是当前CSP通过大数据盈利时最关心的问题。为了建立客户的信任,CSP应该采取以下措施:

  • 采取和遵守行业最佳实践和生产准则;
  • 遵守法律法规

以上问题促使整个行业将隐私和安全作为大数据分析参考模型和最佳实践的组成部分。

为了使CSP、公共数据、CSP数据消费者和其它行业数据源形成的数据生态系统落实到位,数据交换非常重要,特别是负责客户数据的数据拥有者,在数据价值链中发挥着关键角色。

在CSP组织内部,数据治理是一个全局的业务流程。有些CSP的数据治理通过数据治理委员会管理。数据治理涵盖了安全、隐私和法律法规领域,定义了每类客户和网络数据的管理策略和实施。

数据治理是一个涵盖性术语,它包括多项参考模型的功能。

参考模型功能

数据治理层纳入了所有其它大数据分析平台的分层,并提供如下功能:

  • 隐私:管理、保护和保存;
  • 安全:加密、认证和访问控制;
  • 法律法规:法律、法规的遵从。

情景维度

  • 收集:用户个人数据的收集;
  • 使用:用户个人数据的存储、操作和使用;
  • 披露:用户个人数据的披露,包括任何可回溯至单个用户的汇总数据。

隐私管理

隐私管理是为了解决用户对数据透明、数据可选择性以及可视化设置隐私信息的需求。

隐私管理应用于个人身份信息PII(Personal Identification Information)。匿名化技术可以将带有个人身份信息PII的数据转换为不带个人身份信息PII的数据。

CSP管理的隐私策略

  • 默认的隐私策略
  • 收集、使用和披露用户个人信息的上下文

用户管理的隐私设置

  • 选择加入和选择退出的隐私设置
  • 收集、使用和披露用户个人信息的可视化
  • 用户个人信息保存期限

隐私保护

隐私保护为每个用户数据提供了隐私保护策略:

  • CSP管理的隐私策略
  • 单个用户管理的隐私设置

隐私保护提供基于以上策略的用户数据收集、存储、使用和披露的控制功能。

隐私保存

隐私保存提供用户细节数据和汇总数据的披露功能。

匿名化技术

隐私保存涉及用户数据披露的匿名化技术,例如:

  • K匿名模型(K-anonymity)
  • 伪匿名
  • 个人身份信息的修订(Redaction of Personally Identifiable Information)

微分隐私保护技术

近期在微分隐私保护技术领域的研究提供了已被数据证明的隐私保护技术。微分隐私保护技术旨在保护隐私的同时兼顾数据可用性。

安全

加密

加密能力提供数据的存储和传输安全。数据可能存储在大数据平台,或者数据装载和交换时的临时存储。

认证

基于上下文感知的认证服务用于从外部访问大数据平台的各层功能。上下文信息包括被访问的分层、被认证实体的角色和访问目的。

访问控制

访问控制提供基于角色和上下文感知的访问控制功能。

法律法规

法律法规的遵从包括根据区域、日期和时间收集、使用和披露数据的法律和法规,遵从可以是强制的,也可以是可选的(最佳实践、生产准则),包括下面3种类型:

  • 法律遵从
  • 法规遵从
  • 最佳实践和生产准则

TMF大数据分析指南 Unleashing Business Value in Big Data(二)

时间: 2024-11-08 15:24:40

TMF大数据分析指南 Unleashing Business Value in Big Data(二)的相关文章

TMF大数据分析指南 Unleashing Business Value in Big Data

大数据分析指南 TMF Frameworx最佳实践 Unleashing Business Value in Big Data 前言 此文节选自TMF Big Data Analytics Guidebook. TMF文档版权信息  Copyright © TeleManagement Forum 2013. All Rights Reserved. This document and translations of it may be copied and furnished to other

大数据分析工具采购指南

  大数据分析工具使用户能够分析各种各样的信息--包括结构化事务数据和社交媒体帖子.Web服务器日志文件及其他形式的非结构化和半结构化数据.一旦组织决定要购买一个大数据分析工具,下一步就是制定一个流程,评估可用的产品,然后从中找到一个最适合你需求和要求的产品. 下面我们将介绍在评估各种大数据分析工具符合企业需求的程度时可能用到的必备特性和特定属性.然后,你再编写一个预案请求(RFP),说明使用这些工具将如何解决组织的需求. 一.  建模技术的广度与深度 供应商已经应用了不同级别的建模,并且相应地

数据的局限:大数据分析不能告诉你什么

咨询师Barry Devlin介绍了一些人们因为统计数据分析不当而误解风险的案例,同时阐述了为什么业务决策不能完全由数据驱动.他提醒企业要清醒认识数据科学家的阴谋,同时接受普通业务人员的天真想法. 大数据分析的拥护者竭尽全力地鼓吹“数据驱动”,明智的人应该谨慎对待,并明确两个问题.一,业务人员在制定特定决策时是否真正理解相关数据,是否曾经以实用且可行的方式向管理层展示了这些数据?二,是否所有决策都有必要在收集“所有数据”之后自动完成? 在<认清风险:如何作出好决策> (Risk Savvy:

Ebay开源 Pulsar:实时大数据分析平台

作者:汪兴朗 汪明明 王巧玲 eBay作为全球性的商务平台和支付行业领先者,拥有海量的用户行为数据.基于现有的hadoop大数据处理,已经不能够满足业务上对实时性的需求.基于eBay过去的大数据处理的经验和对最新技术的运用,eBay探索出一个对海量的数据流进行实时的收集,处理,分发和分析的平台.并于2015年2月底开源此平台: Pulsar. Pulsar作为一个复杂事件处理平台,具有快速,准确,灵活的特性,保证点到点的低延时和高可靠,从而很好得满足了的eBay秒级实时数据分析的需求.同时每秒百

物联网将对大数据分析产生哪些影响?

数据一直在业务中发挥关键作用,但大数据分析的兴起,大量存储的信息可以在计算上挖掘出来,揭示有价值的见解.模式和趋势,使其在现代商业领域几乎不可或缺.收集和分析这些数据并将其转化为可行的结果的能力是成功的关键. 随着物联网的发展,这一过程变得越来越复杂,在日常生活中,从车辆到商店展示,到智能家居自动化技术,如恒温器和水位显示器,都能产生大量的数据.物联网带来了各种新的分析挑战,而更快适应这一新现实的企业将获得明显的优势. 改变基础设施的需求 物联网产生的数据面临的主要问题之一就是它的规模.英特尔公

基于Hadoop离线大数据分析平台项目实战

基于Hadoop离线大数据分析平台项目实战  课程学习入口:http://www.xuetuwuyou.com/course/184 课程出自学途无忧网:http://www.xuetuwuyou.com 课程简介: 某购物电商网站数据分析平台,分为收集数据.数据分析和数据展示三大层面.其中数据分析主要依据大数据Hadoop生态系统常用组件进行处理,此项目真实的展现了大数据在企业中实际应用. 课程内容 (1)文件收集框架 Flume ①Flume 设计架构.原理(三大组件) ②Flume 初步使

【Hadoop大数据分析与挖掘实战】(一)----------P19~22

这是一本书的名字,叫做[Hadoop大数据分析与挖掘实战],我从2017.1开始学习 软件版本为Centos6.4 64bit,VMware,Hadoop2.6.0,JDK1.7. 但是这本书的出版时间为2016.1,待到我2017.1使用时,一部分内容已经发生了翻天覆地的变化. 于是我开始写这么一个博客,把这些记录下来. 我使用的软件版本为: 软件 版本 操作系统 CentOS 7 64bit-1611 虚拟机 VMware 12.5.2 Hadoop 2.7.3 JDK 1.8.0 本人大二

大数据分析案例

部分数据来源于网络,如有侵权请告知. 一.大数据分析在商业上的应用 1.体育赛事预测 世界杯期间,谷歌.百度.微软和高盛等公司都推出了比赛结果预测平台.百度预测结果最为亮眼,预测全程64场比赛,准确率为67%,进入淘汰赛后准确率为94%.现在互联网公司取代章鱼保罗试水赛事预测也意味着未来的体育赛事会被大数据预测所掌控. “在百度对世界杯的预测中,我们一共考虑了团队实力.主场优势.最近表现.世界杯整体表现和博彩公司的赔率等五个因素,这些数据的来源基本都是互联网,随后我们再利用一个由搜索专家设计的机

使用Storm实现实时大数据分析

摘要:随着数据体积的越来越大,实时处理成为了许多机构需要面对的首要挑战.Shruthi Kumar和Siddharth Patankar在Dr.Dobb’s上结合了汽车超速监视,为我们演示了使用Storm进行实时大数据分析.CSDN在此编译.整理. 简单和明了,Storm让大数据分析变得轻松加愉快. 当今世界,公司的日常运营经常会生成TB级别的数据.数据来源囊括了互联网装置可以捕获的任何类型数据,网站.社交媒体.交易型商业数据以及其它商业环境中创建的数据.考虑到数据的生成量,实时处理成为了许多机