在yarn-site.xml中,可以配置virutal core的个数,请注意不是physical core的个数,相关配置如下:
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>30</value>
<description>NodeManager总的可用虚拟CPU个数</description>
</property>
virutal core的概念是将所有physical cpu组成8个可调度的队列,linux使得有任务的时候每个physical cpu都能够调度,达到负载均衡。假设一台pc有16个physical cpu,当只有一个container的时候,这个container会使用这16个cpu,如果有2个container则每个container各占用8个physical cpu
spark运行的时候,通过--executor-cores指定的cpu个数都是vcore的个数,所以spark on yarn运行程序的时候,虽然通过--executor-cores指定vcore个数为1,但是所有的cpu都是很忙被占用。
yarn默认情况下,只根据内存调度资源,所以spark on yarn运行的时候,即使通过--executor-cores指定vcore个数为N,但是在yarn的资源管理页面上看到使用的vcore个数还是1. 相关配置在capacity-scheduler.xml 文件:
<property> <name>yarn.scheduler.capacity.resource-calculator</name> <value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value> <description> The ResourceCalculator implementation to be used to compare Resources in the scheduler. The default i.e. DefaultResourceCalculator only uses Memory while DominantResourceCalculator uses dominant-resource to compare multi-dimensional resources such as Memory, CPU etc. </description> </property>
要想--executor-cores的是指起效,得修改这项配置为:
<property> <name>yarn.scheduler.capacity.resource-calculator</name> <!-- <value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value> --> <value>org.apache.hadoop.yarn.util.resource.DominantResourceCalculator</value> </property>
这样就可以起效果了
cpu调度的时候,需要启动CGroups机制来达到cpu进程隔离的效果,但是windows不支持CGroups机制
版权声明:本文为博主原创文章,未经博主允许不得转载。