Matlab 几种卷积的实现与比较(conv与filter,conv2与filter2)
最近在做控制算法实现的时候,对于其中参杂的各种差分、卷积很头疼,就在网上搜集了些资料,汇总于此,以做备忘。
在MATLAB中,可以用函数y=filter(p,d,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积。
(1)即y=filter(p,d,x)用来实现差分方程,d表示差分方程输出y的系数,p表示输入x的系数,而x表示输入序列。输出结果长度数等于x的长度。
实现差分方程,先从简单的说起:
filter([1,2],1,[1,2,3,4,5]),实现y[k]=x[k]+2*x[k-1]
y[1]=x[1]+2*0=1
(x[1]之前状态都用0)
y[2]=x[2]+2*x[1]=2+2*1=4
(2)y=conv(x,h)是用来实现卷级的,对x序列和h序列进行卷积,输出的结果个数等于x的长度与h的长度之和减去1。
卷积公式:z(n)=x(n)*y(n)=
∫x(m)y(n-m)dm.
程序一:以下两个程序的结果一样
(1)h = [3 2 1 -2 1 0 -4 0 3]; %
impulse response
x = [1 -2 3 -4 3 2 1]; %
input sequence
y = conv(h,x);
n = 0:14;
subplot(2,1,1);
stem(n,y);
xlabel(‘Time
index n‘); ylabel(‘Amplitude‘);
title(‘Output Obtained by Convolution‘); grid;
(2)x1 = [x zeros(1,8)];
y1 = filter(h,1,x1);
subplot(2,1,2);
stem(n,y1);
xlabel(‘Time index n‘); ylabel(‘Amplitude‘);
title(‘Output
Generated by Filtering‘); grid;
程序二:filter和conv的不同
x=[1,2,3,4,5];
h=[1,1,1];
y1=conv(h,x)
y2=filter(h,1,x)
y3=filter(x,1,h)
结果:y1
= 1
3
6
9
12
9
5
y2
= 1
3
6
9
12
y3
=
1
3
6
可见:filter函数y(n)是从n=1开始,认为所有n<1都为0;而conv是从卷积公式计算,包括n<1部分。
因此filter 和conv 的结果长短不同
程序三:滤波后信号幅度的变化
num=100; %总共1000个数
x=rand(1,num); %生成0~1随机数序列
x(x>0.5)=1;
x(x<=0.5)=-1;
h1=[0.2,0.5,1,0.5,0.2];
h2=[0,0,1,0,0];
y1=filter(h1,1,x);
y2=filter(h2,1,x);
n=0:99;
subplot(2,1,1);
stem(n,y1);
subplot(2,1,2);
stem(n,y2);
MATLAB中提供了卷积运算的函数命令conv2,其语法格式为:
C = conv2(A,B)
C =
conv2(A,B)返回矩阵A和B的二维卷积C。若A为ma×na的矩阵,B为mb×nb的矩阵,则C的大小为(ma+mb-1)×(na+nb-1)。
例:
A=magic(5)
A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
>> B=[1 2 1 ;0 2 0;3 1 3]
B =
1 2 1
0 2 0
3 1 3
>> C=conv2(A,B)
C =
17 58 66 34 32 38 15
23 85 88 35 67 76 16
55 149 117 163 159 135 67
79 78 160 161 187 129 51
23 82 153 199 205 108 75
30 68 135 168 91 84 9
33 65 126 85 104 15 27
MATLAB图像处理工具箱提供了基于卷积的图象滤波函数filter2,filter2的语法格式为:
Y = filter2(h,X)
其中Y =
filter2(h,X)返回图像X经算子h滤波后的结果,默认返回图像Y与输入图像X大小相同。例如:
其实filter2和conv2是等价的。MATLAB在计算filter2时先将卷积核旋转180度,再调用conv2函数进行计算。
Fspecial函数用于创建预定义的滤波算子,其语法格式为:
h = fspecial(type)
h = fspecial(type,parameters)
参数type制定算子类型,parameters指定相应的参数,具体格式为:
type=‘average‘,为均值滤波,参数为n,代表模版尺寸,用向量表示,默认值为[3,3]。
type=
‘gaussian‘,为高斯低通滤波器,参数有两个,n表示模版尺寸,默认值为[3,3],sigma表示滤波器的标准差,单位为像素,默认值为0.5