效率爆表的一个晚上,只是因为没带手机,可怕!
今天开启新的课程,http://cs224d.stanford.edu/syllabus.html 第一章是凸优化,convex Optimazition
凸集 Convex Set
定义:
A set C is convex if, for any x, y ∈ C and θ ∈ R with 0 ≤ θ ≤ 1,
θx + (1 ? θ)y ∈ C.
判别方法:如果一个集合C是凸集,则C中任意两个元素连线上的点都属于C
举例:所有的实数空间;实数空间的非负实数域;
凸方程 Convex Function
定义:定义域D(f)为凸集,且对于任意两个属于D(f)的两个数x,y ; θ ∈ R, 0 ≤ θ ≤ 1,满足
f(θx + (1 ? θ)y) ≤ θf(x) + (1 ? θ)f(y).
first-order approximation:
first order condition for convexity
当且仅当 D(f)是凸集且对于所有满足
则f 是凸方程
second order condition for convexity :
当且仅当 D(f)是凸集且f的海瑟Hessian矩阵(二阶导复合)是半正定:
x ∈ D(f),
Jensen’s Inequality
将凸函数的定义扩展到多个点
若扩展为积分
设定为概率密度
f(E[x]) ≤ E[f(x)]
即为Jensen‘s Inequality
α-Sublevel Sets
定义:对于凸函数f和α ∈ R,{x ∈ D(f) : f(x) ≤ α}
凸集:f(θx + (1 ? θ)y) ≤ θf(x) + (1 ? θ)f(y) ≤ θα + (1 ? θ)α = α
Convex Optimization Problems
where f is a convex function, gi are convex functions, and hi are affine functions, and x is the optimization variable
affine function
optimal value
locally optimal if there are no “nearby” feasible points that have a lower objective value
globally optimal if there are no feasible points at all that have a lower objective value
在凸优化问题中,所有的局部最优都是全局最优
凸优化中的特例
Linear Programming
Quadratic Programming
Quadraticallly Constrained Quadratic Programming
Semidefinite Programming
Support Vector Machines 是凸优化中一个典型应用
两类样本中离分类面最近的点且平行于最优分类面的超平面上H1,H2的训练样本就叫做支持向量
问题描述:
假定训练数据 :
可以被分为一个超平面:
进行归一化:
此时分类间隔等于:
即使得:最大间隔最大等价于使最小
Constrained least squares
Maximum Likelihood for Logistic Regression
minimize ?(θ)
应用:
Linear SVM using CVX