Opencv图像识别从零到精通(18)-------击中击不中

在我们学习了膨胀腐蚀和基于膨胀腐蚀的变化之后,我比较喜欢的一个是击中击不中,因为喜欢所以就要单独列出来,心里总是觉得他可以有很多的用处,以后模版匹配,特征检测都会用,更深入的是,他会加深对膨胀腐蚀的理解,是一个很好的例子。

下面先看一个算法步骤和原理:

Hit-miss算法步骤:

击中击不中变换是形态学中用来检测特定形状所处位置的一个基本工具。它的原理就是使用腐蚀;如果要在一幅图像A上找到B形状的目标,我们要做的是:

  • 首先,建立一个比B大的模板W;使用此模板对图像A进行腐蚀,得到图像假设为Process1;
  • 其次,用B减去W,从而得到V模板(W-B);使用V模板对图像A的补集进行腐蚀,得到图像假设为Process2;
  • 然后,Process1与Process2取交集;得到的结果就是B的位置。这里的位置可能不是B的中心位置,要视W-B时对齐的位置而异;

其实很简单,两次腐蚀,然后交集,结果就出来了。

Hit-miss原理:

基于腐蚀运算的一个特性:腐蚀的过程相当于对可以填入结构元素的位置作标记的过程。

腐蚀中,虽然标记点取决于原点在结构元素中的相对位置,但输出图像的形状与此无关,改变原点的位置,只会导致输出结果发生平移。

既然腐蚀的过程相当于对可以填入结构元素的位置作标记的过程,可以利用腐蚀来确定目标的位置。

进行目标检测,既要检测到目标的内部,也要检测到外部,即在一次运算中可以同时捕获内外标记。

由于以上两点,采用两个结构基元H、M,作为一个结构元素对B=(H,M),一个探测目标内部,一个探测目标外部。当且仅当H平移到某一点可填入X的内部,M平移到该点可填入X的外部时,该点才在击中击不中变换的输出中。

opencv应用

<span style="font-size:18px;">Mat src;
src=imread("2312.png",0);
Mat input_image = src;
Mat Kernel_S1 = imread("2311.png");
cvtColor(Kernel_S1, Kernel_S1, CV_RGB2GRAY);
int threhold = 180;
threshold(input_image, input_image, threhold, 255, CV_THRESH_BINARY);
threshold(Kernel_S1, Kernel_S1, threhold, 255, CV_THRESH_BINARY);
imshow("二值化图像", input_image);
Mat BigBlankimage = Mat::ones(input_image.size(), input_image.type());
input_image = BigBlankimage*255-input_image;
imshow("反置图像", input_image);
Mat Blankimage = Mat::ones(Kernel_S1.rows, Kernel_S1.cols, CV_8UC1);
Mat Kernel_S2 = Blankimage * 255 - Kernel_S1;
imshow("核1", Kernel_S1);
imshow("核2", Kernel_S2);
Mat hit_result, hit_result1, hit_result2;
erode(input_image, hit_result1, Kernel_S1, Point(-1,-1), 1, BORDER_DEFAULT, 0);
imshow("hit_result1", hit_result1);
erode(input_image, hit_result2, Kernel_S2, Point(-1,-1), 1, BORDER_DEFAULT, 0);
imshow("hit_result2", hit_result2);
hit_result = hit_result1 & hit_result2;
imshow("击中击不中", hit_result); </span>

matlab应用之函数使用与自定义实现

只要定义好s1 s2 调用bwhitmiss

<span style="font-size:18px;">Ihm = bwhitmiss(I, S1, S2);
% I为输入图像
% S1、S2为结构元素  </span>

根据冈萨雷斯的书的说明,如下图,然后用matlab编写代码,最后得到图像

clear all;
I = zeros(120,180);
I(11:80,16:75) = 1;
I(56:105,86:135) = 1;
I(26:55,141:170) = 1;
figure,imshow(I);

se = zeros(58,58);
se(5:54,5:54) = 1;
figure,imshow(se);

%击中击不中变换
Ie1 = imerode(I,se);
figure,imshow(Ie1);

Ic = 1 - I;
figure,imshow(Ic);
S2 = 1 - se;
figure;imshow(S2);
Ie2 = imerode(Ic,S2);
figure,imshow(Ie2);

Ihm = Ie1 & Ie2;
figure,imshow(Ihm);

这里我们看一下结果

时间: 2024-10-16 21:58:43

Opencv图像识别从零到精通(18)-------击中击不中的相关文章

Opencv图像识别从零到精通(26)---分水岭

分水岭是区域分割三个方法的最后一个,对于前景背景的分割有不错的效果. 分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭.分水岭的概念和形成可以通过模拟浸入过程来说明.在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭. 分水岭

Opencv图像识别从零到精通(13)----点线圆矩形与鼠标事件

图像中不可少的元素就是点.线.圆.椭圆.矩形,多边形,同时这些也是物体的特征组成单位,在图像识别中必不可少.所以要首先去认识这个元素怎么定义和使用,同时鼠标是电脑的窗口,我们很多的处理都会用到鼠标.本文主要有下面三个部分: (1) 点.线.圆.椭圆.矩形的基础应用 (2)点.线.圆.椭圆.矩形的进阶应用 (3)鼠标事件 一.点.线.圆.椭圆.矩形的基础应用 绘制点的函数: Point a = Point (600,600); 文字函数putText()函数 void putText( CvArr

Opencv图像识别从零到精通(30)---重映射,仿射变换

一.序言 面对图像处理的时候,我们会旋转缩放图像,例如前面所提高的resize 插值改变,也是几何变换: 几何运算需要空间变换和灰度级差值两个步骤的算法,像素通过变换映射到新的坐标位置,新的位置可能是在几个像素之间,即不一定为整数坐标.这时就需要灰度级差值将映射的新坐标匹配到输出像素之间.最简单的插值方法是最近邻插值,就是令输出像素的灰度值等于映射最近的位置像素,该方法可能会产生锯齿.这种方法也叫零阶插值,相应比较复杂的还有一阶和高阶插值. 除了插值算法感觉只要了解就可以了,图像处理中比较需要理

Opencv图像识别从零到精通(29)-----图像金字塔,向上上下采样,resize插值

金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似.我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低 一.两个金字塔 高斯金字塔(Gaussianpyramid): 用来向下采样,主要的图像金字塔 拉普拉斯金字塔(Laplacianpyramid): 用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用. 高斯金字塔不同(DoG)又称为拉普拉斯金字塔,给出计算方式前,先加强一下定义 记得在上面我

Opencv图像识别从零到精通(33)----moravec角点、harris角点

一.角点 图像处理和与计算机视觉领域,兴趣点(interest points),或称作关键点(keypoints).特征点(feature points) 被大量用于解决物体识别,图像识别.图像匹配.视觉跟踪.三维重建等一系列的问题.我们不再观察整幅图,而是选择某些特殊的点,然后对他们进行局部有的放矢的分析.如果能检测到足够多的这种点,同时他们的区分度很高,并且可以精确定位稳定的特征,那么这个方法就有使用价值. 图像特征类型可以被分为如下三种: <1>边缘                   

Opencv图像识别从零到精通(7)----图像平移、旋转、镜像

根据vc6.0c++的学习经验,如果可以很好的自己编程,让图像进行平移旋转这些操作,那么就好像能够清楚的看见图像的内部结构当然这里你怎么访问像素,这个可以自己选一种适合的,最多的是ptr指针,at也是挺多的.看着很简单的变换,可以对图像处理上手的更快,当然对于旋转可能就稍微i难了一点,不过opencv提供了resize(0,remap()等这样的函数,可以方便的让我们进行学习-特别是旋转的时候,有很多的变换,你可以任意旋转一个角度,也可能一直旋转,当然还可以保持图像大小不变的旋转和大小变换的旋转

Opencv图像识别从零到精通(24)------漫水填充,种子填充,区域生长、孔洞填充

可以说从这篇文章开始,就结束了图像识别的入门基础,来到了第二阶段的学习.在平时处理二值图像的时候,除了要进行形态学的一些操作,还有有上一节讲到的轮廓连通区域的面积周长标记等,还有一个最常见的就是孔洞的填充,opencv这里成为漫水填充,其实也可以叫种子填充,或者区域生长,基本的原理是一样的,但是应用的时候需要注意一下,种子填充用递归的办法,回溯算法,漫水填充使用堆栈,提高效率,同时还提供了一种方式是扫描行.经常用来填充孔洞,现在来具体看看. 漫水填充:也就是用一定颜色填充联通区域,通过设置可连通

Opencv图像识别从零到精通(28)----Kmeans

K-means算法算是个著名的聚类算法了,不仅容易实现,并且效果也不错,训练过程不需人工干预,实乃模式识别等领域的居家必备良品啊,今天就拿这个算法练练手.属于无监督学习中间接聚类方法中的动态聚类 流程: 1.随机选取样本中的K个点作为聚类中心 2.计算所有样本到各个聚类中心的距离,将每个样本规划在最近的聚类中 3.计算每个聚类中所有样本的中心,并将新的中心代替原来的中心 4.检查新老聚类中心的距离,如果距离超过规定的阈值,则重复2-4,直到小于阈值 聚类属于无监督学习,以往的回归.朴素贝叶斯.S

Opencv图像识别从零到精通(27)---grabcut

这是基于图论的分割方法,所以开始就先介绍了 Graph cuts,然后再到Grab cut   一. Graph cuts Graph cuts是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmentation).立体视觉(stereo vision).抠图(Image matting)等. 此类方法把图像分割问题与图的最小割(min cut)问题相关联.首先用一个无向图G=<V,E>表示要分割的图像,V和E分别是顶点(vertex)和边(edge)