给个图,告诉R,P,Q三点的坐标,求出A,B,C三点的坐标
我的做法:
根据梅涅劳斯定理列出三个二元一次方程组,求出pb,qc,ra的长度,然后用点位移求出A,B,C三点的坐标即可
我的代码:
#include<iostream> #include<map> #include<string> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<algorithm> using namespace std; struct dot { double x,y; dot(){} dot(double a,double b){x=a,y=b;} friend dot operator -(dot a,dot b){return dot(a.x-b.x,a.y-b.y);} friend dot operator +(dot a,dot b){return dot(a.x+b.x,a.y+b.y);} friend dot operator *(dot a,double b){return dot(a.x*b,a.y*b);} friend double operator /(dot a,dot b){return a.x*b.x+a.y*b.y;} friend double operator *(dot a,dot b){return a.x*b.y-a.y*b.x;} }; struct fun { double a,b,c; fun(){} fun(double x,double y,double z) { a=x; b=y; c=z; } }; dot sf(fun a,fun b) { double c,d,e; c=dot(a.a,b.a)*dot(a.b,b.b); d=dot(a.c,b.c)*dot(a.b,b.b); e=dot(a.a,b.a)*dot(a.c,b.c); return dot(d/c,e/c); } double dis(dot a,dot b){return sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2));} dot cd(dot a) { double t=dis(a,dot(0,0)); return dot(a.x/t,a.y/t); } int main() { int N,i; double m[10],pr,pq,rq; dot a,b,c,d[10]; cin>>N; while(N--) { for(i=0;i<3;i++) cin>>d[i].x>>d[i].y; for(i=1;i<7;i++) cin>>m[i]; pr=dis(d[0],d[2]); pq=dis(d[0],d[1]); rq=dis(d[1],d[2]); a=sf(fun((m[1]+m[2])*m[4],-m[1]*m[3],m[1]*m[3]*pr),fun(m[5]*(m[1]+m[2]),-m[2]*m[6],-m[5]*(m[1]+m[2])*pr)); a=cd(d[2]-d[0])*a.y+d[2]; b=sf(fun(m[2]*m[4],-m[1]*(m[3]+m[4]),m[1]*(m[3]+m[4])*pq),fun(m[3]*m[5],-m[6]*(m[3]+m[4]),-m[3]*m[5]*pq)); b=cd(d[0]-d[1])*b.x+d[0]; c=sf(fun(m[3]*(m[5]+m[6]),-m[4]*m[6],-m[3]*(m[5]+m[6])*rq),fun(m[2]*(m[5]+m[6]),-m[1]*m[5],m[1]*m[5]*rq)); c=cd(d[1]-d[2])*c.y+d[1]; printf("%.8lf %.8lf %.8lf %.8lf %.8lf %.8lf\n",a.x,a.y,b.x,b.y,c.x,c.y); } }
原题:
Time limit: 3.000 seconds
In the picture below you can see a triangle ABC.Point
D, E and F divides the sides BC,
CAand AB into m1:m2,
m3:m4and m5:m6 ratios respectively.
A, D; B,E and C, F are connected.
AD and BE intersects at P,BE and
CF intersects at Q and CF and
ADintersects at R.
So now a new triangle PQR is formed. Given triangleABC it is very easy to find triangle
PQR, but given triangle PQRit is not straight forward to find
ABC. Your task is now to do that.
Input
First line of the input file contains an integer N (0< N < 25001) which denotes how many sets of inputs are there. Inputfor each set contains six floating-point number
Px, Py,Qx, Qy, Rx, Ry.
(0 ≤ Px,Py, Qx, Qy, Rx, Ry ≤10000) in one line and six positive integers
m1, m2,m3, m4, m5, m6 (m1<m2,m3<m4
and m5<m6)in another line. These six numbers denote that the coordinate of points
P, Qand R are (Px, Py), (Qx, Qy)and
(Rx,Ry) respectively.P, Q and
R will never be collinear and will be distinct and therewill always be a triangle
ABC for the given input triangle PQR.Also note that
P, Q and R will be given in counterclockwise order in the input.
Output
For each line of input produce one line of output. Thisline contains six floating-point numbers. These six integers denote the coordinatesof
A, B and C. That is the first two integers denote thecoordinate of
A, the third and fourth integers denote the coordinate of
Band fifth and sixth integers denotes the coordinate of C.
A, Band C will appear counter clockwise order. All the output numbers shouldhave eight digits after the decimal point.
Sample Input
3 4467.61586728 8492.59551366 7060.96479020 6775.46633005 6725.89311907 9028.87449315 11 56 38 97 49 60 5779.32806104 1918.19337634 7490.69623286 4845.34535926 6419.53729066 4864.56878239 18 80 56 87 58 59 8991.93033007 6724.32910758 7219.48100000 7527.95330769 8549.92222645 3068.19948096 13 86 11 44 20 35 |
Output for Sample Input
9231.81800000 9623.96300000 3537.20000000 9108.65000000 7337.89000000 4913.10199999 7424.76700001 9490.84399999 4757.24799999 170.01100001 9262.77299999 4813.54299999 8242.99300000 529.39300000 9373.35300000 6551.39300000 6655.90700000 9417.10200000 |
Problemsetter: Shahriar Manzoor, Special Thanks: Rujia Liu