用JavaScript实现斐波拉契数列

<html>
    <head>
        <meta charset="utf-8" />
        <title>html</title>
        <script type="text/javascript">
            function getNthFibonacci(num){
            if(num < 2){
                return num;
            }
            var first = 0;
            var second = 1;
            var third;
            for(var i = 2;i < num;i ++){
                third = first + second;
                first = second;
                second = third;
            }
            return third;
        }
        function output(){
            var number = 10;
            var answer = getNthFibonacci(number);
            document.write(answer);
        }
        </script>
    </head>

    <body>
    </body>
    <script type="text/javascript">output()</script>
</html>

建议不适用递归调用,当数字很大时,递归会非常耗时。

时间: 2024-11-02 21:34:20

用JavaScript实现斐波拉契数列的相关文章

斐波拉契数列(用JavaScript和Python实现)

1.用JavaScript 判断斐波拉契数列第n个数是多少 //需求:封装一个函数,求斐波那契数列的第n项 //斐波拉契数列 var n=parseInt(prompt("输入你想知道的斐波那契数列的第几位数")); document.write(f(n)); function f(n){ if (n>=3) { var a=1; var b=1; for(var i=3;i<=n;i++){ var temp=b; b=a+b ; a=temp; } return b;

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

js算法集合(二) javascript实现斐波那契数列 (兔子数列) Javascript实现杨辉三角

js算法集合(二)  斐波那契数列.杨辉三角 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列和杨辉三角进行研究,来加深对Javascript的理解. 一.Javascript实现斐波那契数列 ①要用Javascript实现斐波那契数列,我们首先要了解什么是斐波那契数列:斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为

青蛙跳台阶问题-斐波拉契数列

题目1:一个台阶总共有n级,如果一次可以跳1级,也可以跳2级.求总共有多少种跳法 首先我们考虑最简单的情况,加入只有1级台阶,那显然只有一种跳法,如果有2级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1级:另外一种就是一次跳2级 现在我们来讨论一般情况.我们把n级台阶时的跳法看成是n的函数,记为f(n).当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1):另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的

浅谈C#中的斐波拉契数列

突然对那些有趣的数学类知识感兴趣了,然后就简单研究了一下斐波拉契数列,看看它的有趣之处! 斐波拉契数列(Fibonacci Sequence),又称黄金分割数列,该数列由意大利的数学家列奥纳多·斐波那契发现的.这种数列指的是这样一个数列:0.1.1.2.3.5.8.13.21. 34.--在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*). 用C#实现斐波拉契数列的代码: Console.Write("请输入一个长

在c#中编写斐波拉契数列程序

思路:首先因为输出的是一个数列,又因为不定长,所以要见一个集合来装数列,其次确定第一个数和第二个数都为1,然后根据斐波拉契数列的特点,确定是一个循环语句,再根据从第三位开始,每个数字都是前两个数的和的特点写出代码.代码如下: while(true){Console.Write("请输入斐波拉契数列的长度:");int len = int.Parse(Console.ReadLine());int[] array = new int[len];if (len < 3){Consol

斐波拉契数列的计算方法

面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long Fib(unsigned int n) { if(n<=0) return 0; if(n==1) return 1; return Fib(n-1) + Fib(n-2); } 缺陷: 当n比较大时递归非常慢,因为递归过程中存在很多重复计算. 二.改进思路: 应该采用非递归算法,保存之前的计算结

斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - 1) + F(n - 2),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F(0) = 1. 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod 1000000007. 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为

斐波拉契数列问题

古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? package Test; /** * 斐波拉契数列问题(兔子问题) * 可推导递推公式 * f(n+1)=f(n)+f(n-1) * */ public class FibonacciNumeral { public static void main(String[] args) { System.out.println("第一个月的兔子为1"