从统计学角度来看深度学习(2):自动编码器和自由能

从统计学角度来看深度学习(2):自动编码器和自由能

原文链接:http://blog.shakirm.com/2015/03/a-statistical-view-of-deep-learning-ii-auto-encoders-and-free-energy/

作者:Shakir Mohamed  翻译:钟琰    审校:何通    编辑:王小宁

本文得到了原英文作者Shakir Mohamed的授权同意,由钟琰翻译、何通审校。感谢他们的支持和帮助。

基于前馈深度神经网络的判别模型已经在许多工业应用中获得了成功,引发了探寻如何利用无监督学习方法带来相似结果的热潮。降噪自动编码器是深度学习中一种主要的无监督学习方法。本文将探索降噪自编码器和统计学中密度估计之间的联系,我们将从统计学的视角去考察降噪自动编码器学习方法,并将之视为一种潜在因子模型的推断问题。我们的机器学习应用能从这样的联系中获得启发并受益。

广义的降噪自动编码器(GDAEs

降噪自动编码器是无监督深度学习中的一个重大进步,它极大的提升了数据表示的可扩展性和稳健性。对每个数据点y,降噪自动编码器先利用一个已知的噪化过程C(y′|y)建立一个y的含噪声版本y′,其后我们以y′为输入利用神经网络来重新恢复原始数据y。整个学习网络可以被分为两个部分:编码器和解码器,其中编码器z的输出可被认为是原始数据的一种表示或特征。该问题的目标函数如下[1]:

Perturbation:y′∼C(y′|y)

Encoder:z(y′)=f?(y′)Decoder:y≈gθ(z)

Objective:LDAE=logp(y|z)

其中logp(⋅)是一个依数据选择的对数似然函数,同时目标函数是所有观测点上对数似然函数的平均。广义降噪自编码器(GDAEs)考虑到这个目标函数受制于有限的训练数据,从而在原有公式的基础上引入了一个额外的惩罚项R(⋅)[2]:

LGDAE=logp(y|z)–λR(y,y′)

GDAEs方法的原理是观测空间上的扰动能增强编码器结果z的稳健性和不敏感性。使用GDAEs时,我们需要注意两个关键的问题:1)如何选择一个符合实际的噪化过程;2)如何选择合适的调整函数R(⋅)。

分离模型与推断

从统计上推导自编码器的困难在于: 它们并不能区分数据模型(反映我们对数据性质和结构的预期的统计假设)和推断估计方法(我们将观测数据联系到模型假设的种种方法)。自编码器学习框架提供的是一套计算流程,而非统计解释。当我们要解释一个数据的时候,我们必须先了解数据再把它用作为输入。不区分数据模型和推断方法阻碍了我们去正确地评价并比较几种候选方法的好坏,让我们无法理解文献中那些能带来启发的相关方法,使我们难以利用学术界广阔的知识。

为了减轻这些忧虑,我们不妨将通过把解码器看做是统计模型(实践中确实有很多自编码器的解释与应用)来重新理解自编码器。一个概率解码器能提供数据的生成性描述,而我们的任务是对这个模型进行学习(或者推断)。对一个给定的模型,有很多可以用来进行推断的候选方法,如最大似然方法(ML),最大后验概率估计(MAP),噪声对比估计,马尔可夫链蒙特卡尔理论(MCMC),变分推断,腔方法(cavity methods),集成的嵌套拉普拉斯近似(INLA)等。因此编码器的角色便十分明确:编码器是对由解码器描述的模型进行推断的机制,它仅仅是现有的各式各样的推断方法中的一种,并且具有自己的优缺点。

潜因子模型中的近似推理

图1 潜变量模型中编码器-解码器的推断过程

另一个DAEs的难点在于它的稳健性建立在对考察原始数据的干扰上。这样一个噪化过程一般并不容易设计。此外,通过对概率分布的推导,我们可以发现通过对对数噪化数据的密度函数logp(y′) 应用变分原理,我们可以得到DAE的目标函数LDAE的一个下界[1],然而并不是我们所感兴趣的统计量。

一个可行的方法是将变分原理应用到我们感兴趣的统计量上来,即对数观测数据的边际概率分布logp(y)[3][4]。通过将变分原则应用到生成模型(概率解码器模型)中能够得到新的目标函数,我们称其为变分自由能:

LVFE=Eq(z)[logp(y|z)]–KL[q(z)∥p(z)]

仔细观察公式,我们可以发现它和GDAE的目标函数相符合。不过这里仍然存在着以下几点显著的不同:

1)不同于考虑观测值上的扰动,该公式考虑在隐藏值上通过z的先验分布p(z)获得的扰动。这时隐藏层变量是随机隐变量,而自编码器是一个可以用来直接抽样的生成模型。

2)编码器q(z|y)用来近似潜变量的真实后验分布p(z|y)。

3)我们现在可以从理论上解释GDAE目标函数中引入的惩罚函数。与其人为设计惩罚项,我们更应该推导出这个惩罚函数的形式应该是先验概率与编码器分布之间的KL距离。

从这个视角再次考察自编码器,可以看到它是一种近似贝叶斯推断的高效实现。利用一个编码器-解码器的结构,我们可以使用单个计算模型来优化所有参数。由于对测试数据仅需要一次前向计算,该方法能够让我们快速有效地进行统计推断。使用这种方法的代价是我们将面临一个更难的最优化问题,因为优化编码器的参数让我们同时耦合所有潜变量的推断。那些不把q分布作为一个编码器的方法可以处理观测数据中的任意缺失值,而我们的编码器必须在已知缺失值模式的情况下进行训练,没有办法处理观测数据中任意缺失模式。我们使用的一种探究这个联系的方法是在深度隐高斯模型(DLGM)中基于随机变分推断(并利用一个编码器进行实现)[3]进行统计推断,这种方法现在是一系列扩展内容的基础[5][6]。

总结

自动编码器能够用来解决统计推断的问题,并为统计推断提供了一个强而有力的方法,这一方法将在寻找更好的非监督学习方法中起到重要作用。使用统计学视角看待自编码器,并使用变分法对其重塑,使得我们能很好地区分统计模型和推断方法。于是我们能更有效地实现推断,得到一个易于抽样的生成模型,这允许我们研究所关心的统计量,并得到一个有重要惩罚项的损失函数。这是一个将会越来越流行的视角,在我们继续探索非监督学习时也值得回顾。

参考文献
[1] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol,Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning, 2008
[2] Yoshua Bengio, Li Yao, Guillaume Alain, Pascal Vincent, Generalized denoising auto-encoders as generative models, Advances in Neural Information Processing Systems, 2013
[3] Danilo Jimenez Rezende, Shakir Mohamed, Daan Wierstra, Stochastic Backpropagation and Approximate Inference in Deep Generative Models, Proceedings of The 31st International Conference on Machine Learning, 2014
[4] Diederik P Kingma, Max Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114, 2014
[5] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, Max Welling, Semi-supervised learning with deep generative models, Advances in Neural Information Processing Systems, 2014
[6] Karol Gregor, Ivo Danihelka, Alex Graves, Daan Wierstra, DRAW: A Recurrent Neural Network For Image Generation, arXiv preprint arXiv:1502.04623, 2015
时间: 2024-11-06 20:29:46

从统计学角度来看深度学习(2):自动编码器和自由能的相关文章

从统计学角度来看深度学习(1):递归广义线性模型

从统计学角度来看深度学习(1):递归广义线性模型 原文链接:http://blog.shakirm.com/2015/01/a-statistical-view-of-deep-learning-i-recursive-glms/ 作者:Shakir Mohamed        翻译:王小宁      审校:冯凌秉  朱雪宁   编辑:王小宁 本文得到了原英文作者Shakir Mohamed的授权同意,由王小宁翻译.冯凌秉和朱雪宁审校.感谢他们的支持和帮助. 深度学习及其应用已经成为实用机器学

深度学习“引擎”之争:GPU加速还是专属神经网络芯片?

深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景

深度学习从被监督走向互动

来源:http://tech.163.com/16/0427/07/BLL3TM9M00094P0U.html 编者按:2016年是人工智能诞辰60周年.4月22日,2016全球人工智能技术大会(GAITC) 暨人工智能60年纪念活动启动仪式在北京国家会议中心举行,约1600余专家.学者及产业界人士出席大会. 大会专题报告由中国人工智能学会副秘书长.地平线机器人技术创始人兼CEO余凯博士主持.嘉宾包括中国人工智能学会理事长.中国工程院院士李德毅,IBM中国研究院大数据及认知计算研究总监苏中,百度

风险中性的深度学习选股策略

一.数据驱动型机器学习模型的问题 目前流行的机器学习方法,包括深度学习,大部分是数据驱动的方法,通过对训练集数据学习来提取知识.数据驱动型机器学习方法应用成功的前提是:从训练集数据中学习到的"知识"在样本外外推时依然适用. 当机器学习方法应用于投资领域时,一般是以历史数据作为训练集数据来训练模型,应用在未来的市场中.在深度学习多因子选股策略中,也是通过对历史股票行情数据的学习,来建立预测模型.此类机器学习方法在投资领域的应用是否会成功,取决于从历史数据中学习到的模型在未来的外推中是否有

秦涛:深度学习的五个挑战和其解决方案

深度学习的五个挑战和其解决方案 编者按:日前,微软亚洲研究院主管研究员秦涛博士受邀作客钛媒体,分享他对深度学习挑战和解决方案的思考 ,本文为秦涛博士在此次分享的实录整理. 大家好,我是微软亚洲研究院的秦涛,今天我将分享我们组对深度学习这个领域的一些思考,以及我们最近的一些研究工作.欢迎大家一起交流讨论. 先介绍一下我所在的机器学习组.微软亚洲研究院机器学习组研究的重点是机器学习,包含机器学习的各个主要方向,从底层的深度学习分布式机器学习平台(AI的Infrastructure)到中层的深度学习.

一天搞懂深度学习--李宏毅教程分享

原标题:[286页干货]一天搞懂深度学习(台湾资料科学年会课程) 本文是2016 台湾资料科学年会前导课程"一天搞懂深度学习"的全部讲义PPT(共268页),由台湾大学电机工程学助理教授李宏毅主讲.作者在文中分四个部分对神经网络的原理.目前存在形态以及未来的发展进行了介绍.深度学习的每一个核心概念在文中都有相关案例进行呈现,通俗易懂.一天的时间搞懂深度学习?其实并不是没有可能. 深度学习 ( Deep Learning ) 是机器学习 ( Machine Learning ) 中近年来

AI全面入门经典书籍-pytho入门+数学+机器学习+深度学习(tensorflow)一次性打包

百度网盘:https://pan.baidu.com/s/1SShwxxBIHB_rynF_jUjApA 一.内容清单: 1..python入门书籍:?? ??? ?python基础教程.pdf?? ??? ?python语言及其应用.pdf?? ??? ?python语言入门.pdf?? ??? ?像计算机科学家一样思考python第2版.pdf ?? ??? ?备注:自己找一本精读,其他辅助阅读,会有不一样的效果.?? ? 2.数学:?? ??? ?同济高等数学 第六版 上册.pdf?? ?

从软件工程的角度写机器学习6——深度学习之卷积神经网络(CNN)实现

卷积神经网络(CNN)实现 背景 卷积神经网络广泛用于图像检测,它的实现原理与传统神经网络基本上是一样的,因此将普遍意义的神经网络和卷积神经网络的实现合成一篇. 神经网络实现思路 "扔掉神经元" 尽管所有教程在介绍神经网络时都会把一大堆神经元画出来,并且以输入节点--神经元--输出结点连线,但是,在编程实现时,基于神经元去编程是低效的.典型如这篇经典文章里面的代码: http://blog.csdn.net/zzwu/article/details/575125. 比较合适的方法是将神

从认识论的角度谈机器学习与深度学习

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能.它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳.综合而不是演绎. 深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.