一篇文章看懂iOS代码块Block

iOS代码块Block

概述

代码块Block是苹果在iOS4开始引入的对C语言的扩展,用来实现匿名函数的特性,Block是一种特殊的数据类型,其可以正常定义变量、作为参数、作为返回值,特殊地,Block还可以保存一段代码,在需要的时候调用,目前Block已经广泛应用于iOS开发中,常用于GCD、动画、排序及各类回调

注: Block的声明与赋值只是保存了一段代码段,必须调用才能执行内部代码

Block变量的声明、赋值与调用

Block变量的声明
Block变量的声明格式为: 返回值类型(^Block名字)(参数列表);

// 声明一个无返回值,参数为两个字符串对象,叫做aBlock的Block
void(^aBlock)(NSString *x, NSString *y);

// 形参变量名称可以省略,只留有变量类型即可
void(^aBlock)(NSString *, NSString *);

注: ^被称作”脱字符”

Block变量的赋值
Block变量的赋值格式为: Block变量 = ^(参数列表){函数体};

aBlock = ^(NSString *x, NSString *y){
    NSLog(@"%@ love %@", x, y);
};

注: Block变量的赋值格式可以是: Block变量 = ^返回值类型(参数列表){函数体};,不过通常情况下都将返回值类型省略,因为编译器可以从存储代码块的变量中确定返回值的类型

声明Block变量的同时进行赋值
int(^myBlock)(int) = ^(int num){
    return num * 7;
};

// 如果没有参数列表,在赋值时参数列表可以省略
void(^aVoidBlock)() = ^{
    NSLog(@"I am a aVoidBlock");
};
Block变量的调用
// 调用后控制台输出"Li Lei love Han Meimei"
aBlock(@"Li Lei",@"Han Meimei");

// 调用后控制台输出"result = 63"
NSLog(@"result = %d", myBlock(9));

// 调用后控制台输出"I am a aVoidBlock"
aVoidBlock();

使用typedef定义Block类型

在实际使用Block的过程中,我们可能需要重复地声明多个相同返回值相同参数列表的Block变量,如果总是重复地编写一长串代码来声明变量会非常繁琐,所以我们可以使用typedef来定义Block类型

// 定义一种无返回值无参数列表的Block类型
typedef void(^SayHello)();

// 我们可以像OC中声明变量一样使用Block类型SayHello来声明变量
SayHello hello = ^(){
    NSLog(@"hello");
};

// 调用后控制台输出"hello"
hello();

Block作为函数参数

Block作为C函数参数
// 1.定义一个形参为Block的C函数
void useBlockForC(int(^aBlock)(int, int))
{
    NSLog(@"result = %d", aBlock(300,200));
}

// 2.声明并赋值定义一个Block变量
int(^addBlock)(int, int) = ^(int x, int y){
    return x+y;
};

// 3.以Block作为函数参数,把Block像对象一样传递
useBlockForC(addBlock);

// 将第2点和第3点合并一起,以内联定义的Block作为函数参数
useBlockForC(^(int x, int y) {
    return x+y;
});
Block作为OC函数参数
// 1.定义一个形参为Block的OC函数
- (void)useBlockForOC:(int(^)(int, int))aBlock
{
    NSLog(@"result = %d", aBlock(300,200));
}

// 2.声明并赋值定义一个Block变量
int(^addBlock)(int, int) = ^(int x, int y){
    return x+y;
};

// 3.以Block作为函数参数,把Block像对象一样传递
[self useBlockForOC:addBlock];

// 将第2点和第3点合并一起,以内联定义的Block作为函数参数
[self useBlockForOC:^(int x, int y){
    return x+y;
}];
使用typedef简化Block
// 1.使用typedef定义Block类型
typedef int(^MyBlock)(int, int);

// 2.定义一个形参为Block的OC函数
- (void)useBlockForOC:(MyBlock)aBlock
{
    NSLog(@"result = %d", aBlock(300,200));
}

// 3.声明并赋值定义一个Block变量
MyBlock addBlock = ^(int x, int y){
    return x+y;
};

// 4.以Block作为函数参数,把Block像对象一样传递
[self useBlockForOC:addBlock];

// 将第3点和第4点合并一起,以内联定义的Block作为函数参数
[self useBlockForOC:^(int x, int y){
    return x+y;
}];

Block内访问局部变量

  • 在Block中可以访问局部变量
// 声明局部变量global
int global = 100;

void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};
// 调用后控制台输出"global = 100"
myBlock();
  • 在声明Block之后、调用Block之前对局部变量进行修改,在调用Block时局部变量值是修改之前的旧值
// 声明局部变量global
int global = 100;

void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};
global = 101;
// 调用后控制台输出"global = 100"
myBlock();
  • 在Block中不可以直接修改局部变量
// 声明局部变量global
int global = 100;

void(^myBlock)() = ^{
    global ++; // 这句报错
    NSLog(@"global = %d", global);
};
// 调用后控制台输出"global = 100"
myBlock();

注: 原理解析,通过clang命令将OC转为C++代码来查看一下Block底层实现,clang命令使用方式为终端使用cd定位到main.m文件所在文件夹,然后利用clang -rewrite-objc main.m将OC转为C++,成功后在main.m同目录下会生成一个main.cpp文件

// OC代码如下
void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};

// 转为C++代码如下
void(*myBlock)() = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, global));

// 将变量类型精简之后C++代码如下,我们发现Block变量实际上就是一个指向结构体__main_block_impl_0的指针,而结构体的第三个元素是局部变量global的值
void(*myBlock)() = &__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA, global);

// 我们看一下结构体__main_block_impl_0的代码
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int global;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _global, int flags=0) : global(_global) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

// 在OC中调用Block的方法转为C++代码如下,实际上是指向结构体的指针myBlock访问其FuncPtr元素,在定义Block时为FuncPtr元素传进去的__main_block_func_0方法
((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);

// __main_block_func_0方法代码如下,由此可见NSLog的global正是定义Block时为结构体传进去的局部变量global的值
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    int global = __cself->global; // bound by copy
    NSLog((NSString *)&__NSConstantStringImpl__var_folders_6y_vkd9wnv13pz6lc_h8phss0jw0000gn_T_main_d5d9eb_mi_0, global);
}

// 由此可知,在Block定义时便是将局部变量的值传给Block变量所指向的结构体,因此在调用Block之前对局部变量进行修改并不会影响Block内部的值,同时内部的值也是不可修改的

Block内访问__block修饰的局部变量

  • 在局部变量前使用下划线下划线block修饰,在声明Block之后、调用Block之前对局部变量进行修改,在调用Block时局部变量值是修改之后的新值
// 声明局部变量global
__block int global = 100;

void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};
global = 101;
// 调用后控制台输出"global = 101"
myBlock();
  • 在局部变量前使用下划线下划线block修饰,在Block中可以直接修改局部变量
// 声明局部变量global
__block int global = 100;

void(^myBlock)() = ^{
    global ++; // 这句正确
    NSLog(@"global = %d", global);
};
// 调用后控制台输出"global = 101"
myBlock();

注: 原理解析,通过clang命令将OC转为C++代码来查看一下Block底层实现

// OC代码如下
void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};

// 转为C++代码如下
void(*myBlock)() = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_global_0 *)&global, 570425344));

// 将变量类型精简之后C++代码如下,我们发现Block变量实际上就是一个指向结构体__main_block_impl_0的指针,而结构体的第三个元素是局部变量global的指针
void(*myBlock)() = &__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA, &global, 570425344);

// 由此可知,在局部变量前使用__block修饰,在Block定义时便是将局部变量的指针传给Block变量所指向的结构体,因此在调用Block之前对局部变量进行修改会影响Block内部的值,同时内部的值也是可以修改的

Block内访问全局变量

  • 在Block中可以访问全局变量
// 声明全局变量global
int global = 100;

void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};
// 调用后控制台输出"global = 100"
myBlock();
  • 在声明Block之后、调用Block之前对全局变量进行修改,在调用Block时全局变量值是修改之后的新值
// 声明全局变量global
int global = 100;

void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};
global = 101;
// 调用后控制台输出"global = 101"
myBlock();
  • 在Block中可以直接修改全局变量
// 声明全局变量global
int global = 100;

void(^myBlock)() = ^{
    global ++;
    NSLog(@"global = %d", global);
};
// 调用后控制台输出"global = 101"
myBlock();

注: 原理解析,通过clang命令将OC转为C++代码来查看一下Block底层实现

// OC代码如下
void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};

// 转为C++代码如下
void(*myBlock)() = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));

// 将变量类型精简之后C++代码如下,我们发现Block变量实际上就是一个指向结构体__main_block_impl_0的指针,而结构体中并未保存全局变量global的值或者指针
void(*myBlock)() = &__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA);

// 我们看一下结构体__main_block_impl_0的代码
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

// 在OC中调用Block的方法转为C++代码如下,实际上是指向结构体的指针myBlock访问其FuncPtr元素,在定义Block时为FuncPtr元素传进去的__main_block_func_0方法
((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);

// __main_block_func_0方法代码如下,由此可见NSLog的global还是全局变量global的值
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    NSLog((NSString *)&__NSConstantStringImpl__var_folders_6y_vkd9wnv13pz6lc_h8phss0jw0000gn_T_main_f35954_mi_0, global);
}

// 由此可知,全局变量所占用的内存只有一份,供所有函数共同调用,在Block定义时并未将全局变量的值或者指针传给Block变量所指向的结构体,因此在调用Block之前对局部变量进行修改会影响Block内部的值,同时内部的值也是可以修改的

Block内访问静态变量

  • 在Block中可以访问静态变量
// 声明静态变量global
static int global = 100;

void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};
// 调用后控制台输出"global = 100"
myBlock();
  • 在声明Block之后、调用Block之前对静态变量进行修改,在调用Block时静态变量值是修改之后的新值
// 声明静态变量global
static int global = 100;

void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};
global = 101;
// 调用后控制台输出"global = 101"
myBlock();
  • 在Block中可以直接修改静态变量
// 声明静态变量global
static int global = 100;

void(^myBlock)() = ^{
    global ++;
    NSLog(@"global = %d", global);
};
// 调用后控制台输出"global = 101"
myBlock();

注: 原理解析,通过clang命令将OC转为C++代码来查看一下Block底层实现

// OC代码如下
void(^myBlock)() = ^{
    NSLog(@"global = %d", global);
};

// 转为C++代码如下
void(*myBlock)() = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, &global));

// 将变量类型精简之后C++代码如下,我们发现Block变量实际上就是一个指向结构体__main_block_impl_0的指针,而结构体的第三个元素是静态变量global的指针
void(*myBlock)() = &__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA, &global);

// 我们看一下结构体__main_block_impl_0的代码
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int *global;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_global, int flags=0) : global(_global) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

// 在OC中调用Block的方法转为C++代码如下,实际上是指向结构体的指针myBlock访问其FuncPtr元素,在定义Block时为FuncPtr元素传进去的__main_block_func_0方法
((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);

// __main_block_func_0方法代码如下,由此可见NSLog的global正是定义Block时为结构体传进去的静态变量global的指针
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    int *global = __cself->global; // bound by copy
    NSLog((NSString *)&__NSConstantStringImpl__var_folders_6y_vkd9wnv13pz6lc_h8phss0jw0000gn_T_main_4d124d_mi_0, (*global));
}

// 由此可知,在Block定义时便是将静态变量的指针传给Block变量所指向的结构体,因此在调用Block之前对静态变量进行修改会影响Block内部的值,同时内部的值也是可以修改的

Block在MRC及ARC下的内存管理

Block在MRC下的内存管理
  • 默认情况下,Block的内存存储在栈中,不需要开发人员对其进行内存管理
// 放Block变量出了作用域,Block的内存会被自动释放
void(^myBlock)() = ^{
    NSLog(@"------");
};
myBlock();
  • 在Block的内存存储在栈中时,如果在Block中引用了外面的对象,不会对所引用的对象进行任何操作
Person *p = [[Person alloc] init];

void(^myBlock)() = ^{
    NSLog(@"------%@", p);
};
myBlock();

[p release]; // Person对象在这里可以正常被释放
  • 如果对Block进行一次copy操作,那么Block的内存会被移动到堆中,这时需要开发人员对其进行release操作来管理内存
void(^myBlock)() = ^{
    NSLog(@"------");
};
myBlock();

Block_copy(myBlock);

// do something ...

Block_release(myBlock);
  • 如果对Block进行一次copy操作,那么Block的内存会被移动到堆中,在Block的内存存储在堆中时,如果在Block中引用了外面的对象,会对所引用的对象进行一次retain操作,即使在Block自身调用了release操作之后,Block也不会对所引用的对象进行一次release操作,这时会造成内存泄漏
Person *p = [[Person alloc] init];

void(^myBlock)() = ^{
    NSLog(@"------%@", p);
};
myBlock();

Block_copy(myBlock);

// do something ...

Block_release(myBlock);

[p release]; // Person对象在这里无法正常被释放,因为其在Block中被进行了一次retain操作
  • 如果对Block进行一次copy操作,那么Block的内存会被移动到堆中,在Block的内存存储在堆中时,如果在Block中引用了外面的对象,会对所引用的对象进行一次retain操作,为了不对所引用的对象进行一次retain操作,可以在对象的前面使用下划线下划线block来修饰
__block Person *p = [[Person alloc] init];

void(^myBlock)() = ^{
    NSLog(@"------%@", p);
};
myBlock();

Block_copy(myBlock);

// do something ...

Block_release(myBlock);

[p release]; // Person对象在这里可以正常被释放
  • 如果对象内部有一个Block属性,而在Block内部又访问了该对象,那么会造成循环引用

情况一

@interface Person : NSObject

@property (nonatomic, copy) void(^myBlock)();

@end

@implementation Person

- (void)dealloc
{
    NSLog(@"Person dealloc");

    Block_release(_myBlock);
    [super dealloc];
}

@end

Person *p = [[Person alloc] init];

p.myBlock = ^{
    NSLog(@"------%@", p);
};
p.myBlock();

[p release]; // 因为myBlock作为Person的属性,采用copy修饰符修饰(这样才能保证Block在堆里面,以免Block在栈中被系统释放),所以Block会对Person对象进行一次retain操作,导致循环引用无法释放

情况二

@interface Person : NSObject

@property (nonatomic, copy) void(^myBlock)();

- (void)resetBlock;

@end

@implementation Person

- (void)resetBlock
{
    self.myBlock = ^{
        NSLog(@"------%@", self);
    };
}

- (void)dealloc
{
    NSLog(@"Person dealloc");

    Block_release(_myBlock);

    [super dealloc];
}

@end

Person *p = [[Person alloc] init];
[p resetBlock];
[p release]; // Person对象在这里无法正常释放,虽然表面看起来一个alloc对应一个release符合内存管理规则,但是实际在resetBlock方法实现中,Block内部对self进行了一次retain操作,导致循环引用无法释放
  • 如果对象内部有一个Block属性,而在Block内部又访问了该对象,那么会造成循环引用,解决循环引用的办法是在对象的前面使用下划线下划线block来修饰,以避免Block对对象进行retain操作

情况一

@interface Person : NSObject

@property (nonatomic, copy) void(^myBlock)();

@end

@implementation Person

- (void)dealloc
{
    NSLog(@"Person dealloc");

    Block_release(_myBlock);
    [super dealloc];
}

@end

__block Person *p = [[Person alloc] init];

p.myBlock = ^{
    NSLog(@"------%@", p);
};
p.myBlock();

[p release]; // Person对象在这里可以正常被释放

情况二

@interface Person : NSObject

@property (nonatomic, copy) void(^myBlock)();

- (void)resetBlock;

@end

@implementation Person

- (void)resetBlock
{
    // 这里为了通用一点,可以使用__block typeof(self) p = self;
    __block Person *p = self;
    self.myBlock = ^{
        NSLog(@"------%@", p);
    };
}

- (void)dealloc
{
    NSLog(@"Person dealloc");

    Block_release(_myBlock);

    [super dealloc];
}

@end

Person *p = [[Person alloc] init];
[p resetBlock];
[p release]; // Person对象在这里可以正常被释放
Block在ARC下的内存管理
  • 在ARC默认情况下,Block的内存存储在堆中,ARC会自动进行内存管理,程序员只需要避免循环引用即可
// 放Block变量出了作用域,Block的内存会被自动释放
void(^myBlock)() = ^{
    NSLog(@"------");
};
myBlock();
  • 在Block的内存存储在堆中时,如果在Block中引用了外面的对象,会对所引用的对象进行强引用,但是在Block被释放时会自动去掉对该对象的强引用,所以不会造成内存泄漏
Person *p = [[Person alloc] init];

void(^myBlock)() = ^{
    NSLog(@"------%@", p);
};
myBlock();

// Person对象在这里可以正常被释放
  • 如果对象内部有一个Block属性,而在Block内部又访问了该对象,那么会造成循环引用

情况一

@interface Person : NSObject

@property (nonatomic, copy) void(^myBlock)();

@end

@implementation Person

- (void)dealloc
{
    NSLog(@"Person dealloc");
}

@end

Person *p = [[Person alloc] init];

p.myBlock = ^{
    NSLog(@"------%@", p);
};
p.myBlock();

// 因为myBlock作为Person的属性,采用copy修饰符修饰(这样才能保证Block在堆里面,以免Block在栈中被系统释放),所以Block会对Person对象进行一次强引用,导致循环引用无法释放

情况二

@interface Person : NSObject

@property (nonatomic, copy) void(^myBlock)();

- (void)resetBlock;

@end

@implementation Person

- (void)resetBlock
{
    self.myBlock = ^{
        NSLog(@"------%@", self);
    };
}

- (void)dealloc
{
    NSLog(@"Person dealloc");
}

@end

Person *p = [[Person alloc] init];
[p resetBlock];

// Person对象在这里无法正常释放,在resetBlock方法实现中,Block内部对self进行了一次强引用,导致循环引用无法释放
  • 如果对象内部有一个Block属性,而在Block内部又访问了该对象,那么会造成循环引用,解决循环引用的办法是使用一个弱引用的指针指向该对象,然后在Block内部使用该弱引用指针来进行操作,这样避免了Block对对象进行强引用

情况一

@interface Person : NSObject

@property (nonatomic, copy) void(^myBlock)();

@end

@implementation Person

- (void)dealloc
{
    NSLog(@"Person dealloc");
}

@end

Person *p = [[Person alloc] init];
__weak typeof(p) weakP = p;

p.myBlock = ^{
    NSLog(@"------%@", weakP);
};
p.myBlock();

// Person对象在这里可以正常被释放

情况二

@interface Person : NSObject

@property (nonatomic, copy) void(^myBlock)();

- (void)resetBlock;

@end

@implementation Person

- (void)resetBlock
{
    // 这里为了通用一点,可以使用__weak typeof(self) weakP = self;
    __weak Person *weakP = self;
    self.myBlock = ^{
        NSLog(@"------%@", weakP);
    };
}

- (void)dealloc
{
    NSLog(@"Person dealloc");
}

@end

Person *p = [[Person alloc] init];
[p resetBlock];

// Person对象在这里可以正常被释放
Block在ARC下的内存管理的官方案例

在MRC中,我们从当前控制器采用模态视图方式present进入MyViewController控制器,在Block中会对myViewController进行一次retain操作,造成循环引用

MyViewController *myController = [[MyViewController alloc] init];
// ...
myController.completionHandler =  ^(NSInteger result) {
   [myController dismissViewControllerAnimated:YES completion:nil];
};
[self presentViewController:myController animated:YES completion:^{
   [myController release];
}];

在MRC中解决循环引用的办法即在变量前使用下划线下划线block修饰,禁止Block对所引用的对象进行retain操作

__block MyViewController *myController = [[MyViewController alloc] init];
// ...
myController.completionHandler =  ^(NSInteger result) {
    [myController dismissViewControllerAnimated:YES completion:nil];
};
[self presentViewController:myController animated:YES completion:^{
   [myController release];
}];

但是上述方法在ARC下行不通,因为下划线下划线block在ARC中并不能禁止Block对所引用的对象进行强引用,解决办法可以是在Block中将myController置空(为了可以修改myController,还是需要使用下划线下划线block对变量进行修饰)

__block MyViewController *myController = [[MyViewController alloc] init];
// ...
myController.completionHandler =  ^(NSInteger result) {
    [myController dismissViewControllerAnimated:YES completion:nil];
    myController = nil;
};
[self presentViewController:myController animated:YES completion:^{}];

上述方法确实可以解决循环引用,但是在ARC中还有更优雅的解决办法,新创建一个弱指针来指向该对象,并将该弱指针放在Block中使用,这样Block便不会造成循环引用

MyViewController *myController = [[MyViewController alloc] init];
// ...
__weak MyViewController *weakMyController = myController;
myController.completionHandler =  ^(NSInteger result) {
    [weakMyController dismissViewControllerAnimated:YES completion:nil];
};
[self presentViewController:myController animated:YES completion:^{}];

虽然解决了循环引用,但是也容易涉及到另一个问题,因为Block是通过弱引用指向了myController对象,那么有可能在调用Block之前myController对象便已经被释放了,所以我们需要在Block内部再定义一个强指针来指向myController对象

MyViewController *myController = [[MyViewController alloc] init];
// ...
__weak MyViewController *weakMyController = myController;
myController.completionHandler =  ^(NSInteger result) {
    MyViewController *strongMyController = weakMyController;
    if (strongMyController)
    {
        [strongMyController dismissViewControllerAnimated:YES completion:nil];
    }
    else
    {
        // Probably nothing...
    }
};
[self presentViewController:myController animated:YES completion:^{}];

这里需要补充一下,在Block内部定义的变量,会在作用域结束时自动释放,Block对其并没有强引用关系,且在ARC中只需要避免循环引用即可,如果只是Block单方面地对外部变量进行强引用,并不会造成内存泄漏

注: 关于下划线下划线block关键字在MRC和ARC下的不同

__block在MRC下有两个作用
1. 允许在Block中访问和修改局部变量
2. 禁止Block对所引用的对象进行隐式retain操作

__block在ARC下只有一个作用
1. 允许在Block中访问和修改局部变量

使用Block进行排序

在开发中,我们一般使用数组的如下两个方法来进行排序

  • 不可变数组的方法: - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr
  • 可变数组的方法 : - (void)sortUsingComparator:(NSComparator)cmptr

其中,NSComparator是利用typedef定义的Block类型

typedef NSComparisonResult (^NSComparator)(id obj1, id obj2);

其中,这个返回值为NSComparisonResult枚举,这个返回值用来决定Block的两个参数顺序,我们只需在Block中指明不同条件下Block的两个参数的顺序即可,方法内部会将数组中的元素分别利用Block来进行比较并排序

typedef NS_ENUM(NSInteger, NSComparisonResult)
{
    NSOrderedAscending = -1L, // 升序,表示左侧的字符在右侧的字符前边
    NSOrderedSame, // 相等
    NSOrderedDescending // 降序,表示左侧的字符在右侧的字符后边
};

我们以Person类为例,对Person对象以年龄升序进行排序,具体方法如下

@interface Student : NSObject

@property (nonatomic, assign) int age;

@end

@implementation Student

@end

Student *stu1 = [[Student alloc] init];
stu1.age = 18;
Student *stu2 = [[Student alloc] init];
stu2.age = 28;
Student *stu3 = [[Student alloc] init];
stu3.age = 11;

NSArray *array = @[stu1,stu2,stu3];

array = [array sortedArrayUsingComparator:^NSComparisonResult(id obj1, id obj2) {
    Student *stu1 = obj1;
    Student *stu2 = obj2;

    if (stu1.age > stu2.age)
    {
        return NSOrderedDescending; // 在这里返回降序,说明在该种条件下,obj1排在obj2的后边
    }
    else if (stu1.age < stu2.age)
    {
        return NSOrderedAscending;
    }
    else
    {
        return NSOrderedSame;
    }
}];

参考文献

  1. Blocks Programming Topics
  2. A Short Practical Guide to Blocks
  3. Transitioning to ARC Release Notes
  4. iOS开发ARC内存管理技术要点
  5. 唐巧的技术博客
  6. 李明杰(M了个J)相关技术讲解
时间: 2024-10-05 10:52:57

一篇文章看懂iOS代码块Block的相关文章

(好文推荐)一篇文章看懂JavaScript作用域链

闭包和作用域链是JavaScript中比较重要的概念,首先,看看几段简单的代码. 代码1: 1 var name = "stephenchan"; 2 var age = 23; 3 function myFunc() { 4 alert(name); 5 var name = "endlesscode"; 6 alert(name); 7 alert(age); 8 alert(weight); 9 } 10 myFunc(); 11 myFunc(); 上述代码

[转]iOS代码块Block

代码块Block是苹果在iOS4开始引入的对C语言的扩展,用来实现匿名函数的特性,Block是一种特殊的数据类型,其可以正常定义变量.作为参数.作为返回值,特殊地,Block还可以保存一段代码,在需要的时候调用,目前Block已经广泛应用于iOS开发中,常用于GCD.动画.排序及各类回调 注: Block的声明与赋值只是保存了一段代码段,必须调用才能执行内部代码 Block变量的声明.赋值与调用 Block变量的声明 Block变量的声明格式为: 返回值类型(^Block名字)(参数列表); /

一篇文章看懂Android学习最佳路线

为什么中高级Android程序员不多呢?这是一个问题,我不好回答,但是我想写一篇文章来描述下Android的学习路线,期望可以帮助更多的Android程序员提升自己. 作者:来源:Android开发中文站|2015-11-12 10:40 收藏 分享 前言 看到一篇文章中提到"最近几年国内的初级Android程序员已经很多了,但是中高级的Android技术人才仍然稀缺",这的确不假,从我在百度所进行的一些面试来看,找一个适合的高级Android工程师的确不容易,一般需要进行大量的面试才

一篇文章看懂spark 1.3+各版本特性

Spark 1.6.x的新特性Spark-1.6是Spark-2.0之前的最后一个版本.主要是三个大方面的改进:性能提升,新的 Dataset API 和数据科学功能的扩展.这是社区开发非常重要的一个里程碑.1. 性能提升根据 Apache Spark 官方 2015 年 Spark Survey,有 91% 的用户想要提升 Spark 的性能.Parquet 性能自动化内存管理流状态管理速度提升 10X 2. Dataset APISpark 团队引入了 DataFrames,新型Datase

angularjs 一篇文章看懂自定义指令directive

 壹 ? 引 在angularjs开发中,指令的使用是无处无在的,我们习惯使用指令来拓展HTML:那么如何理解指令呢,你可以把它理解成在DOM元素上运行的函数,它可以帮助我们拓展DOM元素的功能.比如最常用ng-click可以让一个元素能监听click事件,这里你可能就有疑问了,同样都是监听为什么不直接使用click事件呢,angular提供的事件指令与传统指令有什么区别?我们来看一个例子: <body ng-controller="myCtrl as vm"> <d

小程序社交立减金正式开放!一篇文章看懂它

2018微信公开课PRO现场,微信小程序团队宣布,小程序立减金能力正式上线. 什么是社交立减金? 这是一款能够帮助商家快速获取社交.裂变传播属性的小程序经营工具--商家应用了这一能力后,用户通过支付.扫码等场景就能参与社交立减金的活动,将社交立减金礼包分享出去,就能获得一份立减金. 如何领取社交立减金? 1.用户在门店用微信支付消费后,可通过收到的模板消息领取立减金: 2.点击"邀请好友一起领取",让更多好友参与进来: 3.下次使用微信支付后,可以直接抵扣立减金. 社交立减金营销效果如

一篇文章看懂Java并发和线程安全

一.前言 长久以来,一直想剖析一下Java线程安全的本质,但是苦于有些微观的点想不明白,便搁置了下来,前段时间慢慢想明白了,便把所有的点串联起来,趁着思路清晰,整理成这样一篇文章. 二.导读 1.为什么有多线程? 2.线程安全描述的本质问题是什么? 3.Java内存模型(JMM)数据可见性问题.指令重排序.内存屏障 三.揭晓答案 1.为什么有多线程 谈到多线程,我们很容易与高性能画上等号,但是并非如此,举个简单的例子,从1加到100,用四个线程计算不一定比一个线程来得快.因为线程的创建和上下文切

一篇文章看懂JS执行上下文

 壹 ? 引 我们都知道,JS代码的执行顺序总是与代码先后顺序有所差异,当先抛开异步问题你会发现就算是同步代码,它的执行也与你的预期不一致,比如: function f1() { console.log('听风是风'); }; f1(); //echo function f1() { console.log('echo'); }; f1(); //echo 按照代码书写顺序,应该先输出 听风是风,再输出 echo才对,很遗憾,两次输出均为 echo:如果我们将上述代码中的函数声明改为函数表达式,

一篇文章看懂物体检测的发展脉络 转

转 https://zhuanlan.zhihu.com/p/28399320 第一,什么是物体检测,如何去评价一个物体里系统的好坏. 第二,物体检测整个的框架是怎么样的?它一般包含了图像的分类和物体检测的定位. 第三,介绍物体检测的历史发展,从传统的人工设计的一些图像特征加上分类器到现在的深度学习. ▼ What's Computer Vision 介绍物体检测之前,我们首先要知道什么是计算机视觉.计算机视觉是计算机科学的一个分支领域,旨在构造智能算法和程序,来"观察"这个世界.比如