四 数据结构与算法总结(一)

转载:http://blog.csdn.net/jie1991liu/article/details/8167194

一.数据结构部分

1.数组和链表的区别:

C++语言中可以用数组处理一组数据类型相同的数据,但不允许动态定义数组的大小,即在使用数组之前必须确定数组的大小。而在实际应用中

,用户使用数组之 前有时无法准确确定数组的大小,只能将数组定义成足够大小,这样数组中有些空间可能不被使用,从而造成内存空间的浪费

。链表是一种常见的数据组织形式,它 采用动态分配内存的形式实现。需要时可以用new分配内存空间,不需要时用delete将已分配的空间释放,不会造成内存空间的浪费。
  
从逻辑结构来看:数组必须事先定义固定的长度(元素个数),不能适应数据动态地增减的情况,即数组的大小一旦定义就不能改变。

当数据增加时,可能超出原先
定义的元素个数;当数据减少时,造成内存浪费;链表动态地进行存储分配,可以适应数据动态地增减的情况,

且可以方便地插入、删除数据项。(数组中插入、删
除数据项时,需要移动其它数据项)。  
  
从内存存储来看:(静态)数组从栈中分配空间(用NEW创建的在堆中), 对于程序员方便快速,但是自由度小;链表从堆中分配空间, 自由度大但是申请管理比较麻烦.

从访问方式来看:数组在内存中是连续存储的,因此,可以利用下标索引进行随机访问;链表是链式存储结构,在访问元素的时候只能通过线性的方式由前到后顺序访问,

所以访问效率比数组要低。

2.链表的一些操作,如链表的反转,链表存在环路的判断(快慢指针),双向链表,循环链表相关操作。

3.队列(特殊的如优先级队列),栈的应用。(比如队列用在消息队列,栈用在递归调用中)

4.二叉树的基本操作

二叉树的三种遍历方式(前序,中序,后序)及其递归和非递归实现,三种遍历方式的主要应用(如后缀表达式等)。相关操作的时间复杂度。

5.字符串相关

整数,浮点数和字符串之间的转换(atoi,atof,itoa)

字符串拷贝注意异常检查,比如空指针,字符串重叠,自赋值,字符串结束符‘/0‘等。

二.算法部分

1.排序算法:

排序可以算是最基本的,最常用的算法,也是笔试面试中最常被考察到的算法。最基本的冒泡排序,选择排序,插入排序要可以很快的用代码实现,

这些主要考察你
的实际编码能力。堆排序,归并排序,快排序,这些算法需要熟悉主要的思想,和需要注意的细节地方。需要熟悉常用排序算法的时间和空间复杂度。

各种排序算法的使用范围总结:

(1)当数据规模较小的时候,可以用简单的排序算法如直接插入排序或直接选择排序。

(2)当文件的初态已经基本有序时,可以
用直接插入排序或冒泡排序。

(3)当数据规模比较大时,应用速度快的排序算法。可以考虑用快速排序。当记录随机分布的时候,快排的平均时间最短,但可能出
现最坏的情况,

这时候的时间复杂度是O(n^2),且递归深度为n,所需的栈空间问O(n)。

(4)堆排序不会出现快排那样的最坏情况,且堆排序所需的辅
助空间比快排要少。但这两种算法都不是稳定的,

若要求排序时稳定的,可以考虑用归并排序。(5)归并排序可以用于内排序,也可以用于外排序。在外排序时,
通常采用多路归并,

并且通过解决长顺串的合并,产生长的初始串,提高主机与外设并行能力等措施,以减少访问外存额次数,提高外排序的效率。

2,查找算法     能够熟练写出或者是上机编码出二分查找的程序。

3.hash算法

4.一些算法设计思想。

贪心算法,分治算法,动态规划算法,随机化算法,回溯算法等。这些可以根据具体的例子程序来复习。

5.STL

STL(Standard Template
Library)是一个C++领域中,用模版技术实现的数据结构和算法库,已经包含在了C++标准库中。

其中的
vecor,list,stack,queue等结构不仅拥有更强大的功能,还有了更高的安全性。除了数据结构外,STL还包含泛化了的迭代器,

和运行在
迭代器上的各种实用算法。这些对于对性能要求不是太高,但又不希望自己从底层实现算法的应用还是很具有诱惑力的。

时间: 2024-11-07 05:18:24

四 数据结构与算法总结(一)的相关文章

数据结构与算法 第四次实验报告 图

数据结构与算法 第四次实验报告 姓名:许恺 学号:2014011329 班级:计算机14-1     中国石油大学(北京)计算机科学与技术系 1.图的定义,文件为"Graph.h" #ifndef GRAPH_H//定义头文件 #define GRAPH_H #include<string>//引入标准库中的头文件 using namespace std; const int MaxSize=12; struct ArcNode//定义边表结点 { int adjvex;/

44. 蛤蟆的数据结构笔记之四十四弗洛伊德Floyd算法

44. 蛤蟆的数据结构笔记之四十四弗洛伊德Floyd算法 本篇名言:"希望是厄运的忠实的姐妹. --普希金" 我们继续来看下数据结构图中的一个算法,这个算法来自图灵奖得主. 1.  Floyd算法介绍 Floyd算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名.注意这个可不是心理学的那个弗洛伊德. 是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径

数据结构与算法JavaScript (四) 串(BF)

串是由零个或多个字符组成的有限序列,又叫做字符串 串的逻辑结构和线性表很相似的,不同的是串针对是是字符集,所以在操作上与线性表还是有很大区别的.线性表更关注的是单个元素的操作CURD,串则是关注查找子串的位置,替换等操作. 当然不同的高级语言对串的基本操作都有不同的定义方法,但是总的来说操作的本质都是相似的.比如javascrript查找就是indexOf, 去空白就是trim,转化大小写toLowerCase/toUpperCase等等 这里主要讨论下字符串模式匹配的几种经典的算法:BF.BM

我的软考之路(四)——数据结构和算法(2)树和二叉树

上鲍恩描述了数据结构的线性结构,我们引入非线性结构本博客-树和二叉树.我想向大家介绍一些基本概念树,树遍历,然后介绍了二叉树的概念和特征.和二叉树遍历.叉树的对照,总结. 树为了描写叙述现实世界的层次结构,树结构中一个数据元素能够有两个或两个以上的直接后继元素. 树的基本概念: 树的概念是学习树的关键所在.掌握了树的基本概念,学会树与二叉树,so easy. 我通过一棵树来了解树的基本概念.例如以下图 1.结点的度 结点的度是子结点的个数.比如:结点1有三个字结点2,3,4,所以结点1的度为3.

数据结构与算法系列研究四——数组和广义表

稀疏矩阵的十字链表实现和转置 一.数组和广义表的定义 数组的定义1:一个 N 维数组是受 N 组线性关系约束的线性表.           二维数组的逻辑结构可形式地描述为:           2_ARRAY(D,R)              其中 D={aij} | i=0,1,...,b1-1; j=0,1,...,b2-1;aij∈D0}              R={Row,Col}              Row={<aij,ai,j+1>|0<=i<=b1-1;

Java数据结构与算法(第四章栈和队列)

本章涉及的三种数据存储类型:栈.队列和优先级队列. 不同类型的结构 程序员的工具 数组是已经介绍过的数据存储结构,和其他结构(链表.树等等)一样,都适用于数据应用中作数据记录. 然而,本章要讲解的是数据结构和算法更多的是作为程序员的工具来运用.它们组要作为构思算法的辅助工具,而不是完全的数据存储工具.这些数据结构的生命周期比那些数据库类型的结构要短的多.在程序操作执行期间它们才被创建,通常它们去执行某项特殊的任务,当完成之后,它们就被销毁. 受限访问 在数组中,只要知道下标就可以访问数据项.或顺

数据结构与算法系列四(单链表)

1.引子 1.1.为什么要学习数据结构与算法? 有人说,数据结构与算法,计算机网络,与操作系统都一样,脱离日常开发,除了面试这辈子可能都用不到呀! 有人说,我是做业务开发的,只要熟练API,熟练框架,熟练各种中间件,写的代码不也能“飞”起来吗? 于是问题来了:为什么还要学习数据结构与算法呢? #理由一: 面试的时候,千万不要被数据结构与算法拖了后腿 #理由二: 你真的愿意做一辈子CRUD Boy吗 #理由三: 不想写出开源框架,中间件的工程师,不是好厨子 1.2.如何系统化学习数据结构与算法?

数据结构与算法1

数据结构与算法(一),概述 转载请注明出处:http://www.cnblogs.com/wangyingli/p/5919297.html 数据结构学了有一年的时间了,但是一直没有好好的总结一下,现在回想起来,感觉好像都不怎么记得了.所以接下来一段时间我将重新学习一下,算是温故而知新了.本着「分享是一种美德」的精神,我将把我的学习总结记录下来,并与大家分享. 本节的主要内容有: 一.数据结构 1.定义 2.关于数据结构的几个术语 3.逻辑结构与物理结构 二.抽象数据类型 三.算法 四.算法的复

数据结构与算法系列----平衡二叉树(AVL树)

一:背景 平衡二叉树(又称AVL树)是二叉查找树的一个进化体,由于二叉查找树不是严格的O(logN),所以引入一个具有平衡概念的二叉树,它的查找速度是O(logN).所以在学习平衡二叉树之前,读者需要了解二叉查找树的实现,具体链接:二叉查找树 那么平衡是什么意思?我们要求对于一棵二叉查找树 ,它的每一个节点的左右子树高度之差不超过1.(对于树的高度的约定:空节点高度是0:叶子节点高度是1.)例如下图: 如果我们的二叉查找树是不平衡该怎么办?进行旋转.经过分析发现,出现不平衡无外乎四种情况,下面我