数据科学家可能成为2015年最热门职业

 

  腾讯科技讯 1月3日,你擅长数学,会用Python编程,而且还对某个行业了如指掌?

  如果你拥有这样的技能集,那你就有可能当上数据科学家。而如果你当上了数据科学家,那你的日子就可以过得风风光光了——LinkedIn的最新投票结果显示,"统计分析和数据挖掘" 是2014年最大的求职法宝。

  美国招聘网站Glassdoor的报告称,数据科学家的平均年薪为118709美元(约合人民币737550元),而程序员的平均年薪为64537美元(约合人民币400974元)。麦肯锡公司的一份研究预测称,到2018年,在"具有深入分析能力的人才"方面,美国可能面临着14万到19万的缺口,而"可以利用大数据分析来做出有效决策的经理和分析师" 缺口则会达到150万。

  该领域目前异常火爆,纽约大学数据科学中心课程的负责人罗伊-洛伦斯(Roy Lowrance)表示,现在可能已经到了巅峰期。"也许存在着泡沫," 他说。 "无论什么事情,一旦变得这样火爆,之后就肯定就会冷下来。"不过,纽约大学希望在未来几年里扩大数据科学课程的招生规模,把学生人数从40名增加到60名。本学年还有五个月才会结束,但50%到75%的学生已经找到了比较理想的工作。

  为什么该领域会变得如此火爆?琳达-博奇(Linda Burtch)是芝加哥的猎头公司博奇工程的董事总经理,她表示,尽管像?谷歌?(微博) 、 亚马逊 、Netflix和Uber这样的高科技公司都有自己的数据科学团队,但那些非高科技公司,比如Neiman Marcus、沃尔玛、Clorox和Gap,它们现在也需要使用这方面的人才,"很多公司都在物色数据科学家,"她说。

  这些公司希望,数据科学专业人才可以挖掘新的信息,来帮助公司开源节流。 IBM 负责大数据业务的副总裁Anjul Bhambhri表示,航空 航天 制造商Pratt & Whitney现在可以预测出飞机发动机何时需要进行维护,准确率达到97%,这可以帮助它更加有效地开展业务。

  虽然IBM在本月刚刚推出了基于云计算的Watson Analytics免费增值工具,但是,为了分析非结构化数据,数据科学家常常不得不亲自动手编写专门的软件程序,这正是数据科学家必须掌握编程技巧的一个原因。

  学校教育

  洛伦斯说,数据科学家需要具备三项基本技能:数学/统计、计算机能力、在特定业务领域的知识。纽约大学数据科学中心希望招收至少具备其中一种技能的学生,然后培养他们掌握其他技能,让学生到毕业的时候,可以独当一面负责处理数据工作。 "在学习过程中,他们要做一些数据科学项目,这些项目需要他们用到这三种技能,"他说。

  但是,如果你想成为一名数据科学,也不一定非得去大学读书才行。从今年9月开始,一家名为梅蒂斯(Metis)的公司开始在纽约举办为期十二周的数据科学训练营,费用为1.4万美元。报名的人非常之多,入学竞争相当激烈。梅蒂斯公司的联合创始人杰森-莫斯(Jason Moss)说,大约有一半的学生都拥有硕士或博士学位。

  第一期训练营在12月初结束。莫斯说,不过几周, 15名学生中就有6名拿到了聘用通知。

  "我不认为训练营可以替代大学教育,"莫斯说。"训练营可以提供一条捷径,让你以最快的速度找到一份工作,但大学的目的不在于此。但我也不认为你必须上大学才能成为一名数据科学家,"他说。"有一种人,他们天生具有好奇心,有勇气,有决心,总想把事情理出头绪,他们在这一行可以干得很好。"

  Anmol Rajpurohit是一名独立的数据科学家兼顾问,他说,做这一行工作最重要的素质就是能够快速学习东西。"与专长于任何特定编程语言相比,泛型编程技巧远远更加重要,"他说。 "在如今这个时代,技术的发展突飞猛进,语言会很快过时,新的语言则将迅速普及。因此,学东西很快的人,会比单独领域的专家更有前途。"

  洛伦斯说,他认为,在某些技能方面,训练营和网上课程可以为学习者提供很大的帮助。但在另外一些方面,它们的作用就就相对有限了。纽约大学的数据科学课程有一个优势,就是可以按照正确的先后顺序来培养你的技能。"我们的教学顺序可以让你循序渐进、融会贯通地掌握技能。"他说。

  数据科学家要做哪些事?

  游戏公司Playstudios的数据科学家乔恩-格林伯格(Jon Greenberg)说:"在日常工作中,我需要管理一系列控制面板,它们提供的信息可以让公司知道,我们的生意到底做得怎么样? 用户在做什么事情?"格林伯格现在是一名经理了,所以他编程的时候没有以往那么多,但是他有时候仍然需要编程。通常来说,他把数据从Apache Hadoop的存储器里调取出来,在分析平台Revolution R上运行它,并对它进行一些可视化处理。 "比如说,我们可以从中得知一部分用户如何与新推出的功能互动,"他解释说。

  六年前,格林伯格拿到了统计学的硕士学位。他希望进入政府部门工作,但却惊讶地发现,公司企业非常需要数据科学家。 "那个时候,数据科学领域还没有现在这么火爆,,"他说。现在,他每天都能从猎头那里收到一个电话或一封邮件。 "这种情况不只是发生在我身上,"他说。"所有的数据科学家可能都是这样。"

  对于格林伯格来说,就业机会很好只是一个加分项,因为他本来就热爱这一行。 "我认为,要做数据科学工作,你必须得有分析头脑才行,而且还得有好奇心,"他说。"你必须得有灵活性和创造性,构思出不同的方法来解决问题。"这项工作的唯一缺点,格林伯格说,就是"清洁"数据(去掉那些没有相关性的结果)需要花费大量时间。"这部分任务并不是那么招人喜欢,你得花很多时间来做它。"他说。

  Rajpurohit说,他花了很多精力来清洁数据和做研究。 "我很大一部分时间都花在做研究上,因为我经常会遇到全新的问题,因此,我需要研究特定领域最新文献,或者是找找专家,听听他们在这方面的看法,"他说。

  "尽管数据科学这个名字和艺术毫不沾边,但是你需要把艺术和科学很好地结合起来。科学的部分很明显——数学,程序设计等等。但艺术部分是同样重要——创造力,对语境有着深刻的理解。把这两部分结合在一起,你就会变得善于解决问题。"

  尽管如此,Rajpurohit也承认,数据科学并不像眼下很多人以为的那样善良迷人。这个领域确实是在变得越来越重要,而且也出现了很多高薪机会,但在数据科学家需要做的日常工作中,有很多其实都很枯燥。

  你是当数据科学家的料吗?

  每天花大量时间来编程,分析控制面板上的数据,获得相关信息,如果你对这样的工作感兴趣,那么你可能就适合干这一行。但如果你仅仅是想拿高工资,那么你可能就会觉得这样的日子过起来苦不堪言。你要知道:真正适合干这一行的人,常常会在业余时间里编写程序,分析数据,而他们这样做只是为了自娱自乐。

  亚当-弗洛葛尔(Adam Flugel)是博奇公司的数据科学招聘猎头,他谈到了最近遇到的一名候选人。此人拥有博士学位,今年秋天将去电艺公司(Electronic Arts)工作。"真正让他脱颖而出的是优势是,他在空闲时间也做这种事情,而且纯粹就是为了好玩,"弗洛葛尔说。"他是多人在线游戏世界《坦克世界大战》的玩家,领导着一个玩家团队。于是他编写了一个从游戏服务器抓取数据的程序,然后进行数据分析,评估自己团队的表现。然后他利用这些信息来弄清应该如何调整自己的战略,应该招收哪些类型的成员,才能提升团队的整体表现。"

  所以,如果你爱的并不是数据本身,而是它可以给你带来的高薪,那么你会发现,自己很难与那样的人竞争。但是博奇说,每个人都应该学会热爱数据,即便只是为了自己事业前途着想,也该这样做。 "十年之内,如果你不是数据大咖,你就别想升到‘首席XX官‘的位置上"博奇说。

  但是像史蒂夫-乔布斯、比尔-盖茨那样的情况又怎么解释呢?他们拥有远见卓识,并没有陷入数据科学的细枝末节之中。"那是30年前的事了,"博奇说。 "我说的是未来10年。"(Kathy)

时间: 2024-10-13 12:22:33

数据科学家可能成为2015年最热门职业的相关文章

如何区分三个大数据热门职业–数据科学家、数据工程师、数据分析师?

随着大数据行业的逐步兴起,相关大数据的职业也成为热门职业,给人才的发展带来了很多机会.数据科学家.数据工程师.数据分析师已经成为大数据行业最热门的职位.那么它们又是如何定义的呢?有什么职责? 1.数据科学家是指能采用科学方法.运用数据挖掘工具对复杂多量的数字.符号.文字.网址.音频或视频等信息进行数字化重现与认识,并能寻找新的数据洞察的工程师或专家(不同于统计学家或分析师). 2.数据工程师一般被定义成“深刻理解统计学科的明星软件工程师”.如果你正为一个商业问题烦恼,那么你需要一个数据工程师.他

如何区分三个大数据热门职业——数据科学家、数据工程师、数据分析师

随着大数据的愈演愈热,相关大数据的职业也成为热门,给人才发展带来带来了很多机会.数据科学家.数据工程师.数据分析师已经成为大数据行业最热门的职位.它们是如何定义的?具体是做什么工作的?需要哪些技能?让我们一起来看看吧. 1.这3个职业是如何定位的? 数据科学家是指能采用科学方法.运用数据挖掘工具对复杂多量的数字.符号.文字.网址.音频或视频等信息进行数字化重现与认识,并能寻找新的数据洞察的工程师或专家(不同于统计学家或分析师). 数据工程师是如何定义的 数据工程师一般被定义成"深刻理解统计学科的

总结数据科学家常用的Python库

概述 这篇文章中,我们挑选了24个用于数据科学的Python库. 这些库有着不同的数据科学功能,例如数据收集,数据清理,数据探索,建模等,接下来我们会分类介绍. 您觉得我们还应该包含哪些Python库?让我们知道! 介绍 我是Python语言的忠实粉丝,它是我在数据科学方面学到的第一门编程语言.Python有三个特点: 它的易用性和灵活性 全行业的接受度:它是业内最流行的数据科学语言 用于数据科学的庞大数量的Python库 事实上,有如此多的Python库,要跟上它们的发展速度可能会变得非常困难

42步进阶学习—让你成为优秀的Java大数据科学家!

作者 灯塔大数据 本文转自公众号灯塔大数据(DTbigdata),转载需授权 如果你对各种数据类的科学课题感兴趣,你就来对地方了.本文将给大家介绍让你成为优秀数据科学家的42个步骤.深入掌握数据准备,机器学习,SQL数据科学等. 本文将这42步骤分为六个部分, 前三个部分主要讲述从数据准备到初步完成机器学习的学习过程,其中包括对理论知识的掌握和Python库的实现. 第四部分主要是从如何理解的角度讲解深入学习的方法.最后两部分则是关于SQL数据科学和NoSQL数据库. 接下来让我们走进这42步进

自学成才的数据科学家告诉你5个学习大数据的正确姿势!

对于数据科学来说,现在是发展的黄金时期.这是个新领域,但增长迅速,同时数据科学家的缺口也很大,据说他们的平均年薪可以达到10万美元.哪里有高薪,哪里就吸引人们,但是数据科学技能的差距意味着许多人需要努力学习.      第一步当然是询问“我怎么学习数据科学”,这个问题的答案往往是一长串的课程和书籍阅读,从线性代数到统计数据,这几年我也是这样学习过来的.我没有编程背景,但我知道我喜欢处理数据. 我比较不能理解在完全没有理解别人的背景时就给他一份长长的书单或者技能表.这就类似于一个老师给你一堆教科书

数据科学家应该掌握的5个工具

本文转自:http://www.36dsj.com/archives/34020 当谈及到分析你编纂的数据时,有大量的工具可以帮助你更好的理解数据,本文总结出了一个包括5个数据科学工具的列表,同时这也是你在当今的社会形势下人们应该掌握的5个数据科学工具. 即使是知识渊博的数据科学家也能提升他们的技术水平.当谈及到分析你编纂的数据时,有大量的工具可以帮助你更好的理解数据.我们与我们的数据科学指导者探讨了很久,最后总结出了一个包括5个数据科学工具的列表,同时这也是你在当今的社会形势下应该掌握的5个数

为什么数据科学家们选择了Python语言?

本文由 伯乐在线 - HanSir 翻译,toolate 校稿 英文出处:Quora [伯乐在线导读]:这个问题来自 Quora,题主还补充说,“似乎很多搞数据的程序员都挺擅长 Python 的,这是为什么呢?”下面是 Jeff Hammerbacher 的回复.(693 赞) Python是一种解释型.动态语言,具有明确而高效的语法.Python具有良好的REPL(Read-Eval-Print Loop ,‘读取-求值-输出’循环),还可以通过dir()和文档字符串从REPL中开发新模块.这

基于100,000篇演讲的分析数据科学家发现了最佳演讲者的特征——及时解释听众不懂的词语,必要时提高10%的音调,正确和恰当的手势,氛围的营造

[TD精选] 基于100,000篇演讲的分析数据科学家发现了最佳演讲者的特征 相信大部分人一定试图寻找过使得自己的演讲变得更加吸引人,更加有气势的方法.现如今,在大数据工具和机器学习技术的辅助下,找到完美演讲的答案已经变得十分容易.Noah Zandan, CEO of Quantified Communications, 为人们提供了第一个能够分析,衡量,评估以及提高人们交流和演讲技巧的分析平台.Zandan 的数据团队分析了100,000多篇来自于企业家,政治家和演说家的演讲.他们将分析重点

几个新角色:数据科学家、数据分析师、数据(算法)工程师

大数据分析的几个新角色:数据科学家.数据分析师.数据(算法)工程师 数学科学家:(发明算法) 运用统计分析.机器学习.分布式处理等技术,从大量数据中提取出对业务有意义的信息,以易懂的形式传达给决策者,并创造出新的数据应用服务的人才. 对享有的模型进行优化.改进,所以涉及到对具体算法的精通和理解,并不断通过AB Test进行验证. 例如:Google的搜索PageRank算法的创始人拉里佩奇Larry Page,他是博士而且在读书期间创造的此算法. 李开复也应该算一个,解决中文搜索及尝试了语音识别