ACboy needs your help
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4542 Accepted Submission(s): 2431
Problem Description
ACboy has N courses this term, and he plans to spend at most M days on study.Of course,the profit he will gain from different course depending on the days he spend on it.How to arrange the M days for the N courses to maximize the
profit?
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers N and M, N is the number of courses, M is the days ACboy has.
Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
N = 0 and M = 0 ends the input.
Output
For each data set, your program should output a line which contains the number of the max profit ACboy will gain.
Sample Input
2 2 1 2 1 3 2 2 2 1 2 1 2 3 3 2 1 3 2 1 0 0
Sample Output
3 4 6 题意: 题目给出n个课程和m天,问如何安排m天的课程使得最后的收益达到最大值. 题解: 简单DP,以dp[i]表示当前安排i天可以获得的最大收益,则可以得出状态转移方程dp[k + j] = max(dp[k + j], dp[k] + a[i][j]); 表示当前的课程安排j天的最 优解. 具体看下代码吧! AC代码:#include <cstdio> #include <iostream> #include <cstring> #include <algorithm> #include <vector> #include <cmath> #include <queue> #include <map> #include <set> #define eps 1e-9 using namespace std; typedef long long ll; typedef pair<int,int>P; const int M = 200; const int INF = 0x3f3f3f3f; const int mod = 10000007; int maxn[M][M],dp[M],tp[M]; int main(){ //freopen("in","r",stdin); int n,m; while(~scanf("%d %d",&n,&m) && (n | m)){ memset(dp,0,sizeof(dp)); for(int i = 1; i <= n; i++){ for(int j = 1; j <= m; j++){ scanf("%d",&maxn[i][j]); } } for(int i = 1; i <= m; i++) dp[i] = maxn[1][i]; //初始化 for(int i = 2; i <= n; i++){ for(int k = 1; k <= m; k++) tp[k] = dp[k]; //防止当前的状态会覆盖之前的值,所以先把最优值保存在tp数组中; for(int j = 1; j <= m; j++){ for(int k = 0; k + j <= m; k++){ tp[k + j] = max(tp[k + j],dp[k] + maxn[i][j]); } } for(int k = 1; k <= m; k++) dp[k] = max(tp[k],dp[k]); } int Max = 1; for(int i = 2; i <= m; i++) if(dp[Max] < dp[i]) Max = i; printf("%d\n",dp[Max]); } return 0; }