最短路之Dijkstra(迪杰斯特拉)

一般用法:

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。重点-----》》》》注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

算法实现:

int map[110][110]; //图
int dis[110]; //记录下从起点到各点的最短距离
int visited[110]; //记录点是否存入

void Dijkstra(int n,int x) //起点为X,共有n个点
{
   int i,p,j,min;
   for (i=1;i<=n;i++) //初始化
   {
      dis[i]=map[x][i];
      visited[i]=0;
   }
   visited[x]=1;
   for (i=1;i<=n;i++)
   {
      min=INF;
      for (j=1;j<=n;j++)
      {
         if(!visited[j] && dis[j]<min) //找‘到已加入点‘的最小边
         {
            p=j;
            min=dis[j];
         }
      }
      visited[p]=1; //记录下遍历的点
      for (j=1;j<=n;j++)
      {
         if(!visited[j] && dis[p]+map[p][j]<dis[j])//更新从起点到该点的最短距离
         {
              dis[j]=dis[p]+map[p][j];
          }
       }
 }

时间: 2024-10-19 09:02:26

最短路之Dijkstra(迪杰斯特拉)的相关文章

dijkstra(迪杰斯特拉)最短路算法的堆优化

dijkstra(迪杰斯特拉)最短路算法是一种时间复杂度经过严格证明的最短路算法. 优化在于每次取最小值的时候采用堆优化,但是在最短路松弛过程中,dist是不断修改的,所以,为了能使复杂度降到O(nlogn),dist修改的同时,在堆中也要修改. 注意dijkstra(迪杰斯特拉)最短路算法只能用于正权边. 1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algo

最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低. Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等. 其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合.一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知. 初始时,S

[小明学算法]4.Dijkstra(迪杰斯特拉)算法

1.定义概念 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.值得注意的是,该算法要求图中不存在负权边. 2.基本思想 设置顶点集合S,初始时,S中仅含有起始点,把从起始点到u且中间只经过S中顶点的路称为从起始点到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径的长度.Dijkstra算法每次从S外取出对应dist值最小的节点u,将其添加到S中,并对所有与u点直接相连

图论,最短路,堆优化迪杰斯特拉

学习了迪杰斯特拉. 类似贪心. 也有点像弗洛伊德. 上代码. 这种是规定了起始节点为1的. 1 #include <cstdio> 2 #include <iostream> 3 #include <string> 4 #include <bits/stdc++.h> 5 6 using namespace std; 7 #define MAXN 10001 8 #define MAXM 100001 9 10 //n点m边 11 12 struct edg

Dijkstra迪杰斯特拉算法

迪杰斯特拉算法是用于求解图的单元最短路径问题,即某个源点到达图中其余顶点的最短路径,其核心思想是每次从剩余未归入路径的顶点中找到一个到达当前路径距离最短的顶点,将其归入路径中,共执行n-1次.该算法需要三个辅助数组,s[ ]数组用来标记各个顶点有没有被归入当前路径中,dist[ ]数组用于表示当前源点到达各个顶点的最短路径长度,path[ ]数组用来存储该顶点在最短路径中的前驱结点. #include<stdio.h> //迪杰斯特拉算法,求带权图中某个源点到到达其余各个顶点的最短路劲,其需要

hdu 2544 最短路 题解 (dijkstra/迪杰斯特拉算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 这道题用dijkstra模板一套就出来了. 模板:http://blog.csdn.net/xdz78/article/details/47719849 需要注意的是,这里的边应该是双向边,所以在输入边的数据的时候应该这样写: for(i=0;i<m;i++){ scanf("%d%d%d",&a,&b,&c); g.map[a][b]=g.map[b]

笔记:最短路径算法—Dijkstra(迪杰斯特拉)

文中代码下如下: #include<iostream> #include<cstdio> #include<fstream> #include<algorithm> #include<string> #include<sstream> #include<cstring> using namespace std; int e[10][10],dis[10],book[10]; int main() { int i,j,n,m

Dijkstra(迪杰斯特拉)算法求解最短路径

过程 首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新.每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离.以这个原则,经过N轮计算就能得到每一个节点的最短距离. 第一轮,可以计算出,2.3.4.5.6到原点1的距离分别为:[7, 9, -1, -1, 14].-1表示无穷大.取其中最小的,为7,即可以确定1的最短路径为0,2为下一轮的前驱节点.同时确定2节点的最短路径为7,路线:1->2. 第二轮,取2节点为前驱节点,按照前驱节点的

43. 蛤蟆的数据结构笔记之四十三最短路径之迪杰斯特拉(Dijkstra )算法

43. 蛤蟆的数据结构笔记之四十三最短路径之迪杰斯特拉(Dijkstra )算法 本篇名言:"辛勤的蜜蜂永没有时间悲哀.--布莱克" 这次来看下Dijkstra )算法.还是老方法,先原理,后实现.代码来自网络. 欢迎转载,转载请标明出处:http://blog.csdn.net/notbaron/article/details/47046031 1.  最短路径 最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径. 管道铺设.线路安排