康托展开-全排列应用

我排第几个

时间限制:1000 ms  |  内存限制:65535 KB

难度:3

描述

现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的?

输入
第一行有一个整数n(0<n<=10000);
随后有n行,每行是一个排列;
输出
输出一个整数m,占一行,m表示排列是第几位;
样例输入
3
abcdefghijkl
hgebkflacdji
gfkedhjblcia
样例输出
1
302715242
260726926

普及一下数学知识

康托展开

  康托展开的公式是 X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,ai为当前未出现的元素中是排在第几个(从0开始)。  这个公式可能看着让人头大,最好举个例子来说明一下。例如,有一个数组 s = ["A", "B", "C", "D"],它的一个排列 s1 = ["D", "B", "A", "C"],现在要把 s1 映射成 X。n 指的是数组的长度,也就是4,所以X(s1) = a4*3! + a3*2! + a2*1! + a1*0!关键问题是 a4、a3、a2 和 a1 等于啥?a4 = "D" 这个元素在子数组 ["D", "B", "A", "C"] 中是第几大的元素。"A"是第0大的元素,"B"是第1大的元素,"C" 是第2大的元素,"D"是第3大的元素,所以 a4 = 3。a3 = "B" 这个元素在子数组 ["B", "A", "C"] 中是第几大的元素。"A"是第0大的元素,"B"是第1大的元素,"C" 是第2大的元素,所以 a3 = 1。a2 = "A" 这个元素在子数组 ["A", "C"] 中是第几大的元素。"A"是第0大的元素,"C"是第1大的元素,所以 a2 = 0。a1 = "C" 这个元素在子数组 ["C"] 中是第几大的元素。"C" 是第0大的元素,所以 a1 = 0。(因为子数组只有1个元素,所以a1总是为0)所以,X(s1) = 3*3! + 1*2! + 0*1! + 0*0! = 20

A B C | 0
A C B | 1
B A C | 2
B C A | 3
C A B | 4
C B A | 5

通过康托逆展开生成全排列

  如果已知 s = ["A", "B", "C", "D"],X(s1) = 20,能否推出 s1 = ["D", "B", "A", "C"] 呢?
  因为已知 X(s1) = a4*3! + a3*2! + a2*1! + a1*0! = 20,所以问题变成由 20 能否唯一地映射出一组 a4、a3、a2、a1?如果不考虑 ai 的取值范围,有
3*3! + 1*2! + 0*1! + 0*0! = 20
2*3! + 4*2! + 0*1! + 0*0! = 20
1*3! + 7*2! + 0*1! + 0*0! = 20
0*3! + 10*2! + 0*1! + 0*0! = 20
0*3! + 0*2! + 20*1! + 0*0! = 20
等等。但是满足 0 <= ai <= n-1 的只有第一组。可以使用辗转相除的方法得到 ai,如下图所示:

知道了a4、a3、a2、a1的值,就可以知道s1[0] 是子数组["A", "B", "C", "D"]中第3大的元素 "D",s1[1] 是子数组 ["A", "B", "C"] 中第1大的元素"B",s1[2] 是子数组 ["A", "C"] 中第0大的元素"A",s[3] 是子数组 ["C"] 中第0大的元素"C",所以s1 = ["D", "B", "A", "C"]。
这样我们就能写出一个函数 Permutation3(),它可以返回  s 的第 m 个排列。

前面的内容从http://archive.cnblogs.com/a/2026276/转载

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
long long fact[13];
char str[15];

int main()
{
    memset(fact,0,sizeof(fact));
    fact[0]=1;
    for(int i=1;i<=12;i++)
    {
        fact[i]=fact[i-1]*i;
    }
    int t;
    cin>>t;
    getchar();
    while(t--)
    {
        gets(str);
        long long sum=0;
        int len=strlen(str);
        for(int i=0; str[i]; i++)
        {
            int cnt=0;
            for(int j=i+1; str[j]; j++)
            {
                if(str[i]>str[j])
                {
                    cnt++;
                }
            }
            sum+=cnt*fact[len-1-i];
        }
        cout<<sum+1<<endl;
    }
    return 0;
}
时间: 2024-10-09 20:29:48

康托展开-全排列应用的相关文章

康托展开-全排列的编码与解码

一.康托展开:全排列到一个自然数的双射 X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! ai为整数,并且0<=ai<i(1<=i<=n) 适用范围:没有重复元素的全排列 二.全排列的编码: {1,2,3,4,...,n}的排列总共有n!种,将它们从小到大排序,怎样知道其中一种排列是有序序列中的第几个? 如 {1,2,3} 按从小到大排列一共6个:123 132 213 231 312 321.想知道321是{1,2,3}中

LightOJ1060 nth Permutation(不重复全排列+逆康托展开)

一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!*...*Nn!), 然后就靠自己YY出解法,搞了好几天,最后向学长要了数据,然后迷迷糊糊调了,终于AC了. 后来才知道当时想的解法类似于逆康托展开,只是逆康托展开是对于没有重复元素全排列而言,不过有没有重复元素都一个样. 而现在做这题很顺,因为思路很清晰了,另外这做法和数论DP的统计部分有相似之处.

康托展开:对全排列的HASH和还原,判断搜索中的某个排列是否出现过

题目:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=2297 前置技能:(千万注意是从0开始数的 康托展开表示的是当前排列在n个不同元素的全排列中的名次.比如213在这3个数所有排列中排第3. 那么,对于n个数的排列,康托展开为: 其中表示第i个元素在未出现的元素中排列第几.举个简单的例子: 对于排列4213来说,4在4213中排第3,注意从0开始,2在213中排第1,1在13中排第0,3在

全排列的编码与解码——康托展开

.康托展开:全排列到一个自然数的双射 X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! ai为整数,并且0<=ai<i(1<=i<=n) 适用范围:没有重复元素的全排列 二.全排列的编码: {1,2,3,4,...,n}的排列总共有n!种,将它们从小到大排序,怎样知道其中一种排列是有序序列中的第几个? 如 {1,2,3} 按从小到大排列一共6个:123 132 213 231 312 321.想知道321是{1,2,3}中第

Gym10081 A - Arcade Game -康托展开、全排列、组合数变成递推的思想

最近做到好多概率,组合数,全排列的题目,本咸鱼不会啊,我概率论都挂科了... 这个题学到了一个康托展开,有点用,瞎写一下... 康托展开: 适用对象:没有重复元素的全排列. 把一个整数X展开成如下形式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0![1] 其中a[i]为当前未出现的元素中是排在第几个(从0开始),并且0<=a[i]<i(1<=i<=n) 用来求全排列中这个串排第几,康托展开的逆运算就是

全排列和康托展开

一.康托展开:全排列到一个自然数的双射 X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! ai为整数,并且0<=ai<i(1<=i<=n):其中X最常见的可以设为:0 <=X<=n!-1,第一个排列即123...n;该排列的X可设为0: 适用范围:没有重复元素的全排列 二.全排列的编码: {1,2,3,4,...,n}的排列总共有n!种,将它们从小到大排序,怎样知道其中一种排列是有序序列中的第几个? 如 {1,2

康托展开和逆康托展开

问题:给定的全排列,计算出它是第几个排列? 对于全排列,不清楚的可以参考全排列 方法:康托展开 对于一个长度为 n 的排列 num[1..n], 其序列号 X 为 X = a[1]*(n-1)! + a[2]*(n-2)! +...+ a[i]*(n-i)! +...+ a[n-1]*1! + a[n]*0! 其中a[i]表示在num[i+1..n]中比num[i]小的数的数量 写做伪代码为: Cantor(num[]) X = 0 For i = 1 .. n tp = 0 For j = i

康托展开

对于n个数的全排列,共有n!中排列方式,如何求某一个序列在整个排列中的次序(从小到大)? 以9的全排列举例:842697513是1-9全排列的第几个?(高中数学排列组合问题,只需要做到不重不漏) 首先看第一位为8,那么第一位为1-7的全排列都比它小,共有7*8!个. 在第一位为8的情况下,其次看第二位为4,那么第二位为1-3的全排列都比它小,共有1*3*7!个. 在第一位为8,第二位为4的情况下,那么第三位为1的全排列都比它小,共有1*1*6!个. 在第一位为8,第二位为4,第三位为2的情况下,

Aizu 0121 Seven Puzzle (康托展开+bfs)

Seven Puzzle Time Limit : 1 sec, Memory Limit : 65536 KB 7パズルは8つの正方形のカードとこれらのカードがぴたりと収まる枠を使って行います.それぞれのカードは互いに区別できるように.0,1,2....7と番号がつけられています.枠には.縦に2個.横に4個のカードを並べることができます. 7パズルを始めるときには.まず枠にすべてのカードを入れます.枠のなかで0のカードだけは.上下左右に隣接するカードと位置を交換することができます.たとえば.枠