支持向量机笔记

支持向量机是一种通用的前馈网络类型。

主要思想:

给定训练样本,支持向量机建立一个超平面作为决策面,使得正例和反例之间的间隔边缘被最大化。

时间: 2024-12-30 10:53:18

支持向量机笔记的相关文章

林轩田--支持向量机笔记(1)

原文地址:https://www.cnblogs.com/HITSZ/p/8689154.html

Halcon学习笔记之支持向量机(二)

例程:classify_halogen_bulbs.hdev 在Halcon中模式匹配最成熟最常用的方式该署支持向量机了,在本例程中展示了使用支持向量机对卤素灯的质量检测方法.通过这个案例,相信大家可以对支持向量机的使用有一个更加清晰的了解.在相当多的检测和识别的应用中,都可以使用相同的方法来解决分类问题. 图1. 卤素灯图像 大致原理: 一.准备阶段:描述样本 1. 准备好两组卤素灯图像样本,好坏的各若干张图像: 2. 对样本图像进行分割,获取卤素灯关键部位区域: 3. 选择合适的对图像的描述

支持向量机学习笔记--原理篇(二)

支持向量机学习笔记(二) 前言 在上一篇中,讲述了感知机是什么.接下来将叙述感知机的对偶形式,这在解决支持向量机问题中非常有用,因为直接求解存在困难时,我们往往会把它变换到其等价形式进行求解.这篇将继续上篇内容,把遗留的两个问题解释清楚. 感知机 感知机学习算法的对偶形式 现在考虑感知机学习算法的对偶形式.感知机学习算法的原始形式和对偶形式在支持向量机学习算法的原始形式和对偶形式相对应. 对偶形式的基本想法是,将w和b表示为实例xi和标记yi的线性组合的形式,通过求解其系数而求得w和b,不失一般

猪猪的机器学习笔记(十二)支持向量机

支持向量机 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十二次次课在线笔记.SVM是一种常见的分类器,在很长一段时间起到了统治地位.而目前来讲SVM依然是一种非常好用的分类器,在处理少量数据的时候有非常出色的表现. 引言: SVM是一个非常常见的分类器,在真正了解他的原理之前我们多多少少都有接触过他.本位将会详细的介绍SVM的原理.目标以及计算过程和算法步骤.我们针对线性可分数据和线性不可分数据介绍了线性支持向量机和非线性支持向量机,并在最后简单阐述非线性支

支持向量机-Machine Learning In Action学习笔记

P.S. SVM比较复杂,代码没有研究清楚,进一步学习其他知识后再来补充.以下仅罗列了最核心的知识,来自<机器学习实战>的学习摘要. 优点:泛化错误率低,计算开销不大,结果易解释. 缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题. 适用数据类型:数值型和标称型数据. 线性可分数据:画出一条直线将两组数据点分开. 超平面(将数据集分隔开来的直线,为N-1维):分类的决策边界.如果数据点离决策边界越远,那么其最后的预测结果也就越可信. 间隔:点到分隔面的距离.(离分隔超

机器学习笔记——支持向量机(3)

八.核(kernel) 如果样本点为线性不可分,那么,需要将数据映射到高维空间,使在原始空间内其线性可分变为线性可分.如下图所示: 上文提到,分类器可以写成: 那么,如果使用一种映射的方法,将低维数据映射到高维(),使得线性不可分变为线性可分.称为特征映射函数,这样,分类器就变为: (1)实例 低维映射到高维能否将线性不可分变为线性可分呢?下面就举个例子来看.假设数据可以用决策的边界表示(如下图左所示),那么,利用, ,做映射,可以得到决策边界:.经过上述的映射变换,原来在圆内的点都在超平面的一

七月算法--12月机器学习在线班-第十二次课笔记—支持向量机(SVM)

七月算法-12月机器学习在线班--第十二次课笔记-支持向量机(SVM) 七月算法(julyedu.com)12月机器学习在线班学习笔记http://www.julyedu.com ? 复习的内容: 对偶问题 KKT条件 ? SVM 1.1三类数据类型 线性可分支持向量机 线性支持向量机 非线性支持向量机 ? 1.2 线性分类 1.2.1 样本到分类面的距离的意义 点到直线的距离,ABC是归一化的."+"正类别,"-"负类别 因此距离可以直接用AX+BY+c=f(x,

R与数据分析旧笔记(十二)分类 (支持向量机)

支持向量机(SVM) 支持向量机(SVM) 问题的提出:最优分离平面(决策边界) 优化目标 决策边界边缘距离最远 数学模型 问题转化为凸优化 拉格朗日乘子法--未知数太多 KKT变换和对偶公式 问题的解决和神经网络化 对偶公式是二次规划问题,有现成的数值方法可以求解 大部分的拉格朗日乘子为0,不为0的对应于"支持向量"(恰好在边界上的样本点) 只要支持向量不变,修改其他样本点的值,不影响结果,当支持变量发生改变时,结果一般就会变化 求解出拉格朗日乘子后,可以推出w和b,判别函数可以写成

统计学习笔记之支持向量机

支持向量机(SVM)是一种二分类模型,跟之前介绍的感知机有联系但也有区别.简单来讲,感知机仅仅是找到了一个平面分离正负类的点,意味着它是没有任何约束性质的,可以有无穷多个解,但是(线性可分)支持向量机和感知机的区别在于,支持向量机有一个约束条件,即利用间隔最大化求最优分离超平面,这时,支持向量机的解就是唯一存在的. 首先来看线性可分的支持向量机,对于给定的数据集,需要学习得到的分离超平面为: 以及对应的分类决策函数: 一般而言,一个点距离分离超平面的远近可以表示分类预测的确信程度.如果超平面确定