redis击穿,穿透,雪崩以及解决方案

1 击穿: 指的是单个key在缓存中查不到,去数据库查询,这样如果数据量不大或者并发不大的话是没有什么问题的。

如果数据库数据量大并且是高并发的情况下那么就可能会造成数据库压力过大而崩溃

注意: 这里指的是单个key发生高并发!!!

解决方案:

1) 通过synchronized+双重检查机制:某个key只让一个线程查询,阻塞其它线程

 在同步块中,继续判断检查,保证不存在,才去查DB。(这个跟单例模式里的double check是一个道理)

例如:

private static volaite Object lockHelp=new Object();

public String getValue(String key){

 String value=redis.get(key,String.class);

 if(value=="null"||value==null||StringUtils.isBlank(value){

     synchronized(lockHelp){

            value=redis.get(key,String.class);

             if(value=="null"||value==null||StringUtils.isBlank(value){

                 value=db.query(key);

                  redis.set(key,value,1000);

              }

        }

       }    

    return value;

}

缺点: 会阻塞其它线程

2) 设置value永不过期

   这种方式可以说是最可靠的,最安全的但是占空间,内存消耗大,并且不能保持数据最新 这个需要根据具体的业务逻辑来做 

 个人觉得如果要保持数据最新不放这么试试,仅供参考:

  起个定时任务或者利用TimerTask 做定时,每个一段时间多这些值进行数据库查询更新一次缓存,当然前提时不会给数据库造成压力过大(这个很重要)

3) 使用互斥锁(mutex key)

业界比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法。

SETNX,是「SET if Not eXists」的缩写,也就是只有不存在的时候才设置,可以利用它来实现锁的效果。在redis2.6.1之前版本未实现setnx的过期时间,所以这里给出两种版本代码参考:

public String get(key) {
String value = redis.get(key);
if (value == null) { //代表缓存值过期
//设置3min的超时,防止del操作失败的时候,下次缓存过期一直不能load db
if (redis.setnx(key_mutex, 1, 3 * 60) == 1) { //代表设置成功
value = db.get(key);
redis.set(key, value, expire_secs);
redis.del(key_mutex);

                 return value;
          } else {  //这个时候代表同时候的其他线程已经load db并回设到缓存了,这时候重试获取缓存值即可
                  sleep(10);
                  get(key);  //重试
          }
      } else {
          return value;
      }

}

缺点:

  1. 代码复杂度增大
  2. 存在死锁的风险
  3. 存在线程池阻塞的风险
    ps:这里主要就是为了解决,多机分布式部署的情况下,视情况而定是不是需要加全局锁

2 雪崩

雪崩指的是多个key查询并且出现高并发,缓存中失效或者查不到,然后都去db查询,从而导致db压力突然飙升,从而崩溃。

出现原因: 1 key同时失效

             2 redis本身崩溃了

方案:

在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。(跟击穿的第一个方案类似,但是这样是避免不了其它key去查数据库,只能减少查询的次数)
可以通过缓存reload机制,预先去更新缓存,再即将发生大并发访问前手动触发加载缓存
不同的key,设置不同的过期时间,具体值可以根据业务决定,让缓存失效的时间点尽量均匀
做二级缓存,或者双缓存策略。A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期。(这种方式复杂点)
3 击透

一般是出现这种情况是因为恶意频繁查询才会对系统造成很大的问题: key缓存并且数据库不存在,所以每次查询都会查询数据库从而导致数据库崩溃。

解决方案:

      1) 使用布隆过滤器: 热点数据等场景(具体看使用场景)

布隆过滤器是什么?

布隆过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率。

当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。打个比方,当它说不认识你时,肯定就不认识;当它说见过你时,可能根本就没见过面,不过因为你的脸跟它认识的人中某脸比较相似 (某些熟脸的系数组合),所以误判以前见过你。

缺点: 1 会存在一定的误判率

      2  对新增加的数据无法进行布隆过滤

      3 数据的key不会频繁的更改

google 的 gauva 中有布隆过滤的实现

 BloomFilter的关键在于hash算法的设定和bit数组的大小确定,通过权衡得到一个错误概率可以接受的结果。

 我们设置的容错率越小那么过滤函数也就多,分配的空间也就越大(存放bits),那么误判率也就越小。

2 将击透的key缓存起来,但是时间不能太长,下次进来是直接返回不存在,但是这种情况无法过滤掉动态的key,就是说每次请求进来都是不同额key,这样还是会造成这个问题

觉得文章有帮助的话就赞赏下吧!

原文地址:https://blog.51cto.com/youling87/2481249

时间: 2024-10-01 11:15:45

redis击穿,穿透,雪崩以及解决方案的相关文章

redis击穿,穿透,雪崩,分布式锁,api(jedis,luttuce)

击穿:(redis做缓存用,肯定发生了高并发,到达数据库查询)设置key 的过期时间,过期后没有这个key,找不到了,就穿过了(其中一个key过期导致并发访问数据库)LRU (LRU,即:最近最少使用淘汰算法(Least Recently Used).LRU是淘汰最长时间没有被使用的页面.)LFU (LFU,即:最不经常使用淘汰算法(Least Frequently Used).LFU是淘汰一段时间内,使用次数最少的页面) 1.key为null 2.setnx 如果key存在,则什么都不做 在

你需要知道的缓存击穿/穿透/雪崩

缓存击穿/穿透/雪崩 Intro 使用缓存需要了解几个缓存问题,缓存击穿.缓存穿透以及缓存雪崩,需要了解它们产生的原因以及怎么避免,尤其是当你打算设计自己的缓存框架的时候需要考虑如何处理这些问题. 缓存击穿 一般的缓存系统,都是按照 key 去缓存查询,如果不存在对应的 value ,就应该去后端系统查找(比如数据库).如果 key 对应的 value 是一定不存在的,并且对该 key 并发请求量很大,就会对后端系统就会造成很大的压力. 在高并发下,多线程同时查询同一个资源,如果缓存中没有这个资

缓存穿透、缓存击穿、缓存雪崩及其解决方案

1.缓存穿透 缓存穿透是指查询一个一定不存在的数据,因为缓存中也无该数据的信息,则会直接去数据库层进行查询,从系统层面来看像是穿透了缓存层直接达到DB,从而称为缓存穿透,没有了缓存层的保护,这种查询一定不存在的数据对系统来说可能是一种危险,如果有人恶意用这种一定不存在的数据来频繁请求系统(准确的说是攻击系统),请求都会到达数据库层导致DB瘫痪从而引起系统故障. 解决方案 缓存穿透业内的解决方案已经比较成熟,主要常用的有以下几种: bloom filter:类似于哈希表的一种算法,用所有可能的查询

8.了解什么是 redis 的雪崩、穿透和击穿?redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 redis 的穿透?

作者:中华石杉 面试题 了解什么是 redis 的雪崩.穿透和击穿?redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 redis 的穿透? 面试官心理分析 其实这是问到缓存必问的,因为缓存雪崩和穿透,是缓存最大的两个问题,要么不出现,一旦出现就是致命性的问题,所以面试官一定会问你. 面试题剖析 缓存雪崩 对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机.缓存挂了,此时 1 秒 5000 个请求全部落数

redis缓存穿透、缓存击穿、缓存雪崩

缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透. 解决办法: 预校验 在控制层对查询参数先进行校验,不符合则丢弃. 布隆过滤 将所有可能查询的参数添加到BloomFilter中,一定不存在的记录就会被BloomFilter过滤掉,从而避免了对底层存储系统的查询压力. 缓存空对象 如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但

Redis缓存穿透和缓存雪崩以及解决方案

Redis缓存穿透和缓存雪崩以及解决方案 Redis缓存穿透和缓存雪崩以及解决方案缓存穿透解决方案布隆过滤缓存空对象比较缓存雪崩解决方案保证缓存层服务高可用性依赖隔离组件为后端限流并降级数据预热缓存并发分布式锁 缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存不命中,接着查询数据库也无法查询出结果,因此也不会写入到缓存中,这将会导致每个查询都会去请求数据库,造成缓存穿透: 解决方案 布隆过滤 对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系

Redis之缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级

Redis之缓存雪崩.缓存穿透.缓存预热.缓存更新.缓存降级 1.缓存雪崩 发生场景:当Redis服务器重启或者大量缓存在同一时期失效时,此时大量的流量会全部冲击到数据库上面,数据库有可能会因为承受不住而宕机 解决办法: 1)随机均匀设置失效时间 2)设置过期标志更新缓存 3)并发量不是特别多的时候,使用最多的解决方案是加锁排队 2.缓存穿透 发生场景:是指查询一个数据库一定不存在的数据.正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并

Redis缓存穿透、缓存雪崩

缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义.在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞. 解决方案 有很多种方法可以有效地解决缓存穿透问题,最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查

高并发架构系列:Redis并发竞争key的解决方案详解

需求由来 1.Redis高并发的问题 Redis缓存的高性能有目共睹,应用的场景也是非常广泛,但是在高并发的场景下,也会出现问题:缓存击穿.缓存雪崩.缓存和数据一致性,以及今天要谈到的缓存并发竞争. 这里的并发指的是多个redis的client同时set key引起的并发问题. 2.出现并发设置Key的原因 Redis是一种单线程机制的nosql数据库,基于key-value,数据可持久化落盘.由于单线程所以Redis本身并没有锁的概念,多个客户端连接并不存在竞争关系,但是利用jedis等客户端

缓存击穿 缓存雪崩

1.关于redis的缓存击穿和雪崩 缓存击穿:redis缓存系统是根据key来查询value的值,当value不存在的时候,就会去访问数据库(DB),如果大量的请求进来找不到与之对应的value时,会对数据库造成巨大压力,以至于导致数据库瘫痪,这就叫缓存击穿. 解决方案:1.使用布隆过滤器 2.不管查询的value是null还是不存在都将值缓存下来,对于这          样的key设置的过期时间比较短. 缓存雪崩:当缓存服务器重启或者某一时间段缓存大量失效,这样失效的时 候会导致大数据量访问