Redis(一)缓存雪崩,缓存穿透,热点key的处理

1 缓存雪崩

缓存雪崩产生的原因

缓存雪崩通俗简单的理解就是:由于原有缓存失效(或者数据未加载到缓存中),新缓存未到期间(缓存正常从Redis中获取,如下图)所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机,造成系统的崩溃。

缓存失效的时候如下图:

缓存失效时的雪崩效应对底层系统的冲击非常可怕!那有什么办法来解决这个问题呢?基本解决思路如下:

第一,大多数系统设计者考虑用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,避免缓存失效时对数据库造成太大的压力,虽然能够在一定的程度上缓解了数据库的压力但是与此同时又降低了系统的吞吐量。

第二,分析用户的行为,尽量让缓存失效的时间均匀分布。

第三,如果是因为某台缓存服务器宕机,可以考虑做主备,比如:redis主备,但是双缓存涉及到更新事务的问题,update可能读到脏数据,需要好好解决。

解决方案

1:在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。

@RequestMapping("/getUsers")
      public Users getByUsers(Long id) {
            // 1.先查询redis
            String key = this.getClass().getName() + "-" + Thread.currentThread().getStackTrace()[1].getMethodName()
                       + "-id:" + id;
            String userJson = redisService.getString(key);
            if (!StringUtils.isEmpty(userJson)) {
                  Users users = JSONObject.parseObject(userJson, Users.class);
                  return users;
            }
            Users user = null;
            try {
                  lock.lock();
                  // 查询db
                  user = userMapper.getUser(id);
                  redisService.setSet(key, JSONObject.toJSONString(user));
            } catch (Exception e) {

            } finally {
                  lock.unlock(); // 释放锁
            }
            return user;
      }

注意:加锁排队只是为了减轻数据库的压力,并没有提高系统吞吐量。假设在高并发下,缓存重建期间key是锁着的,这是过来1000个请求999个都在阻塞的。同样会导致用户等待超时,这是个治标不治本的方法。

2:不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。

3:做二级缓存,A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期(此点为补充)

2 缓存穿透

缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空。这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。

解决的办法就是:如果查询数据库也为空,直接设置一个默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴。

@Service
public class UserAvalanService {
      @Autowired
      private UserMapper userMapper;
      @Autowired
      private RedisService redisService;
      private Lock lock = new ReentrantLock();
      private String SIGN_KEY = "${NULL}";

      public Users getByUsers(Long id) {
            // 1.先查询redis
            String key = this.getClass().getName() + "-" + Thread.currentThread().getStackTrace()[1].getMethodName()
                       + "-id:" + id;
            String userJson = redisService.getString(key);
            if (!StringUtils.isEmpty(userJson)) {
                  Users users = JSONObject.parseObject(userJson, Users.class);
                  return users;
            }

            Users user = null;
            try {
                  lock.lock();
                  // 查询db
                  user = userMapper.getUser(id);
                  redisService.setSet(key, JSONObject.toJSONString(user));
                  lock.unlock();
            } catch (Exception e) {

            } finally {
                  lock.unlock(); // 释放锁
            }
            return user;
      }

      public String getByUsers2(Long id) {
            // 1.先查询redis
            String key = this.getClass().getName() + "-" + Thread.currentThread().getStackTrace()[1].getMethodName()
                       + "-id:" + id;
            String userName = redisService.getString(key);
            if (!StringUtils.isEmpty(userName)) {
                  return userName;
            }
            System.out.println("######开始发送数据库DB请求########");
            Users user = userMapper.getUser(id);
            String value = null;
            if (user == null) {
                  // 标识为null
                  value = SIGN_KEY;
            } else {
                  value = user.getName();
            }
            redisService.setString(key, value);
            return value;
      }
}

把空结果,也给缓存起来,这样下次同样的请求就可以直接返回空了,即可以避免当查询的值为空时引起的缓存穿透。同时也可以单独设置个缓存区域存储空值,对要查询的key进行预先校验,然后再放行给后面的正常缓存处理逻辑。

注意:再给对应的ip存放真值的时候,需要先清除对应的之前的空缓存。

3 热点key

热点key:某个key访问非常频繁,当key失效的时候有大量线程来构建缓存,导致负载增加,系统崩溃。解决办法:

1.使用锁,单机用synchronized,lock等,分布式用分布式锁。

2.缓存过期时间不设置,而是设置在key对应的value里。如果检测到存的时间超过过期时间则异步更新缓存。

3.在value设置一个比过期时间t0小的过期时间值t1,当t1过期的时候,延长t1并做更新缓存操作。

原文地址:https://www.cnblogs.com/hlkawa/p/12293075.html

时间: 2024-11-05 23:33:18

Redis(一)缓存雪崩,缓存穿透,热点key的处理的相关文章

redis缓存雪崩、穿透、击穿概念及解决办法

缓存雪崩 对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机.缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了.此时,如果没有采用什么特别的方案来处理这个故障,DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了. 这就是缓存雪崩. 大约在 3 年前,国内比较知名的一个互联网公司,曾因为缓存事故,导致雪崩,后台系统全部崩溃,事故从当天下午持续到晚上凌晨 3~4

缓存穿透 & 缓存雪崩 & 缓存击穿

一 缓存穿透 1. 行为 查询一个一定不存在的数据.存储层(姑且认为是db,下面都用db指代)查不到数据则不写入缓存,那么下次请求这个不存在的数据同样会到db层查询,失去了缓存的意义.流量大或人为恶意攻击可能会使db宕掉. 2. 解决方案 (1) 布隆过滤器.将全量可能存在的数据哈希到一个足够大的bitmap中,布隆可能误报,但绝不会漏报,那么一定不存在的数据会被拦截掉,从而缓解了对db的压力 (2) 空结果也进入缓存.如果查询返回的结果为空 (数据不存在 | 服务不可用), 仍将数据-空结果进

缓存穿透 缓存雪崩 缓存并发

参考连接:https://segmentfault.com/a/1190000005886009 缓存穿透:查询一个不存在的数据时,缓存和存储层都不会命中,由于存储层查不到数据则不写入缓存,所以每次查询都会到存储层查询从而缓存失去了其存在的意义. 如何避免: 对查询为空的情况也进行缓存,只不过设置一个较短的缓存时间. 把所有可能存在的key放到一个大的bitmap中,查询时通过该bitmap过滤. 缓存雪崩:发生缓存穿透时或者缓存失效后,Storage层的调用量暴增从而使Storage也挂掉.

阿里面试Redis最常见的三个问题:缓存击穿、雪崩、穿透(带答案)

点赞再看,养成习惯,微信搜索[三太子敖丙]我所有文章都在这里,本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试完整考点,文末有福利. 正文 上一期吊打系列我们提到了Redis的基础知识,还没看的小伙伴可以回顾一下 <吊打面试官>系列-Redis基础 那提到Redis我相信各位在面试,或者实际开发过程中对缓存雪崩,穿透,击穿也不陌生吧,就算没遇到过但是你肯定听过,那三者到底有什么区别,我们又应该怎么去防止这样的情况发生呢,我们有请下一位受害者

Redis系列十:缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级

一.缓存雪崩 缓存雪崩我们可以简单的理解为:由于原有缓存失效,新缓存未到期间(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机.从而形成一系列连锁反应,造成整个系统崩溃. 缓存正常从Redis中获取,示意图如下: 缓存失效瞬间示意图如下: 缓存雪崩的解决方案: (1)碰到这种情况,一般并发量不是特别多的时候,使用最多的解决方案是加锁排队,伪代码如下: 加锁排队只是为了

redis缓存穿透、缓存击穿、缓存雪崩

缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透. 解决办法: 预校验 在控制层对查询参数先进行校验,不符合则丢弃. 布隆过滤 将所有可能查询的参数添加到BloomFilter中,一定不存在的记录就会被BloomFilter过滤掉,从而避免了对底层存储系统的查询压力. 缓存空对象 如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但

Redis缓存穿透和缓存雪崩以及解决方案

Redis缓存穿透和缓存雪崩以及解决方案 Redis缓存穿透和缓存雪崩以及解决方案缓存穿透解决方案布隆过滤缓存空对象比较缓存雪崩解决方案保证缓存层服务高可用性依赖隔离组件为后端限流并降级数据预热缓存并发分布式锁 缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存不命中,接着查询数据库也无法查询出结果,因此也不会写入到缓存中,这将会导致每个查询都会去请求数据库,造成缓存穿透: 解决方案 布隆过滤 对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系

Redis缓存穿透、缓存雪崩、缓存击穿

缓存穿透: ? 缓存穿透,是指查询一个数据库一定不存在的数据.正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存.如果数据库查询对象为空,则不放进缓存. 代码流程 参数传入对象主键ID 根据key从缓存中获取对象 如果对象不为空,直接返回 如果对象为空,进行数据库查询 如果从数据库查询出的对象不为空,则放入缓存(设定过期时间) ? 想象一下这个情况,如果传入的参数为-1,会是怎么样?这个-1,就是一定不存在的对象.

redis缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级

一.缓存雪崩 缓存雪崩我们可以简单的理解为:由于原有缓存失效,新缓存未到期间(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机.从而形成一系列连锁反应,造成整个系统崩溃. 缓存正常从Redis中获取,示意图如下: 缓存失效瞬间示意图如下: 缓存雪崩的解决方案: (1)碰到这种情况,一般并发量不是特别多的时候,使用最多的解决方案是加锁排队,伪代码如下: 加锁排队只是为了