基于用户行为数据为用户推荐商品

1、用户行为数据
  用户行为数据在网站中最简单的存在形式就是日志,用户行为就是指用户在系统中进行的各种操作,比如用户在电商网站中进行的浏览、点击、搜索、购买、收藏等行为。我们可以通过分析这些数据来推测用户喜爱哪种商品,从而为用户推荐他们更偏爱的商品。

2、用户行为分类

  根据反馈的明确性来说,用户行为在个性化推荐系统中一般分两种:①显性反馈行为:明确表示用户对商品喜恶的行为,比如评价、收藏等;②隐性反馈行为:不能明确表示用户喜恶的行为,比如浏览页面等。

  根据反馈的方向来说,用户行为数据可以分为:①正反馈:对于某一商品用户倾向于喜欢它;②负反馈:对于某一商品,用户倾向于厌恶它。

  对于显性反馈行为我们很容易区分一个用户行为是正反馈还是负反馈, 而在隐性反馈行为中,则相对难以确定。

3、推荐算法

  在推荐系统中,最基本也最广泛应用的算法是基于用户的协同过滤算法(UserCF)基于物品的协同过滤算法(ItemCF)基于用户的协同过滤算法(UserCF)的基本思想是:当为A用户推荐时,可以先找到和他有相似兴趣的其他用户,然后把这些用户喜欢而A用户没有浏览的物品推荐给A,即为A用户推荐与他有相似兴趣的用户喜欢的商品。UserCF的推荐结果着重于反映和用户兴趣相似的小群体的热点,而ItemCF 的推荐结果着重于维系用户的历史兴趣。换句话说,UserCF的推荐更社会化,反映了用户所在的小型兴趣群体中物品的热门程度,而ItemCF的推荐更加个性化,反映了用户自己的兴趣爱好。所以,新闻网站多用UserCF算法,电商推荐网站多用ItemCF算法。

  但是随着系统用户量的增多,计算用户兴趣相似度矩阵将越来越困难,其运算时间复杂度和空间复杂度的增长和用户数的增长近似于平方关系。而且基于用户的协同过滤很难对推荐结果作出解释。因此,亚马逊提出了另一个算法——基于物品的协同过滤算法(ItemCF)。

  基于物品的协同过滤算法(ItemCF)的基本思想是:给用户推荐那些和他们之前喜欢的物品相似的物品。 比如,该算法会因为你购买过《Java从入门到精通》而给你推荐《Java并发编程实战》。不过,基于物品的协同过滤算法并不利用物品的内容属性计算物品之间的相似度,二是通过分析用户的行为数据计算物品之间的相似度。该算法认为,物品A和物品B具有很大的相似度是因为喜欢物品A的用户大都也喜欢物品B。

  ItemCF流程:

  ①计算物品间的相似度

  

  N(i)代表喜欢i商品的用户数量,由此我们可以看出,Wij代表喜欢i商品的用户中同时喜欢j商品的用户比例。

  在得到商品之间的相似度后,ItemCF通过如下公式计算用户对一个商品的兴趣:

  

  这里N(i)是用户喜欢的商品的集合,S(j,K)是和商品j最相似的K个物品的集合,wij是物品i和j的相似度,Xui是用户u对商品i的喜爱程度。

原文地址:https://www.cnblogs.com/qilin20/p/12292956.html

时间: 2024-10-08 00:50:33

基于用户行为数据为用户推荐商品的相关文章

如何使用redis作为缓存,增强用户访问数据的用户体验

/**完成步骤 1.创建关系型数据库mysql的Provice库,同时启动nosql系列的redis数据库 2.创建项目,导入相关的jar包 3.创建jedis/utils/domain/dao/service/web项目框架包 4.书写相关代码*///页面<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <title>Title<

第2章 利用用户行为数据

本笔记为自己学习之用,对笔记内容感兴趣的读者还请购买正版书籍<推进系统实践>,尊重作者著作权益! 2.1 用户行为数据简介 2.2 用户行为分析 2.2.1 用户活跃度和物品流行度的分布 Power Law,长尾分布 2.2.2 用户活跃度和物品流行度的关系 基于用户行为数据设计的推荐算法一般称为协同过滤算法,比如: 1.基于邻域的方法(neighborhood-based) 2.隐语义模型(latent factor model) 3.基于图的随机游走算法(random walk on gr

推荐系统实践(项亮)— 第2章 利用用户行为数据

2.1 用户行为数据简介 用户行为数据可分为显性反馈行为和隐性反馈行为: 用户数据的统一表示: 2.2 用户行为分析 在设计推荐算法之前需要对用户行为数据进行分析,了解数据中蕴含的一般规律可以对算法的设计起到指导作用. 用户活跃度和物品流行度 均近似符合长尾分布:e.g. 物品流行度定义:对用户产生过行为的总数:e.g. 用户活跃度定义:对物品产生过行为的总数 活跃度和流行度的关系:一般新用户倾向于浏览热门的物品,因为他们对网站还不熟悉,只能点击首页的热门物品,而老用户会逐渐开始浏览冷门的物品(

推荐系统之--- 利用用户行为数据

一.用户行为数据 一个用户行为表示为6部分,即产生行为的用户和行为的对象.行为的种类.产生行为的上下文.行为的内容和权重.用户行为的统一表示如下: user id 产生行为的用户的唯一标识item id 产生行为的对象的唯一标识behavior type 行为的种类(比如是购买还是浏览)context 产生行为的上下文,包括时间和地点等behavior weight 行为的权重(如果是观看视频的行为,那么这个权重可以是观看时长:如果是打分行为,这个权重可以是分数)behavior content

基于大数据的用户行为预测

随着智能手机的普及和APP形态的愈发丰富,移动设备的应用安装量急剧上升.用户在每天使用这些APP的过程中,也会产生大量的线上和线下行为数据.这些数据反映了用户的兴趣与需求,如果能够被深入挖掘并且合理利用,可以指导用户的运营.若能提前预测用户下一步的行为,甚至提前得知用户卸载.流失的可能性,则能更好地指导产品的优化以及用户的精细化运营. 大数据服务商个推旗下的应用统计产品"个数",可以从用户属性.使用行为.行业对比等多指标多维度对APP进行全面统计分析.除了基础统计.渠道统计.埋点统计等

用户画像数据建模方法

作者:百分点技术总监郭志金 摘自:百分点(ID: baifendian_com) 从1991年Tim Berners-Lee发明了万维网(World Wide Web)开始,到20年后2011年,互联网真正走向了一个新的里程碑,进入了“大数据时代”.经历了12.13两年热炒之后,人们逐渐冷静下来,更加聚焦于如何利用大数据挖掘潜在的商业价值,如何在企业中实实在在的应用大数据技术.伴随着大数据应用的讨论.创新,个性化技术成为了一个重要落地点.相比传统的线下会员管理.问卷调查.购物篮分析,大数据第一次

干货:如何利用CRM系统数据做用户画像?

企业在使用CRM系统一段时间后,系统就会积累很大的用户数据,那这些数据有什么用呢?当然有,我们可以对数据进行分析,做用户画像,从而更了解我们的客户,帮助企业做决策. 今天智云通CRM系统小编跟大家一起聊聊如何利用CRM系统数据做用户画像. 一步步来.当我们谈到了解我们的客户(understand our member base),无论是用户类群(segmentation) 还是用户肖像(persona) ,其实说白了是对两类客户认知的判断: l 现存客户 (Existing Customer)

推荐系统-利用用户行为数据

用户的行为数据介绍: 用户的行为主要分为两种-显性反馈行为 和 隐性反馈行为 ,显性反馈行为主要包括 评分 和喜欢/不喜欢 ,youtube最早是使用是使用五分评价系统的,但是只有用户很不满意和特别满意的情况下才会评分,因此又把它变成了二级评分系统. 隐式反馈行为就是页面的浏览行为. 用户的行为分析: 用户的数据分布大都满足一种长尾分布,就是 每个单词出现的频率和他在热门排行榜的排名成反比.反映在网络行为上就是越是新用户越倾向于选择热门的产品越是老用户越是倾向于冷门产品 . 基于用户的行为的推荐

推荐系统实践(项亮)— 第4章 利用用户标签数据

标签应用:一种是让作者或专家给物品打标签:另一种是让普通用户给物品打标签(UGC).当一个用户对一个物品打上标签,这个标签一方面描述了用户的兴趣,另一方面则表示了物品的语义,从而将用户和物品联系了起来.标签,是一种重要的特征表现方式. 4.1 UGC标签系统的代表应用 标签系统的最大优势:发挥群体智力,获得对物品内容信息比较准确的关键词描述,而准确的内容信息是提升个性化推荐系统性能的重要资源. Delicious / CiteLike / 豆瓣 / Hulu 4.2 标签系统中的推荐问题 主要问