枚举GC Roots的实现

枚举根节点

从可达性分析中从GC Roots节点找引用链这个操作为例,可作为GC Roots的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如栈帧中的本地变量表)中,现在很多应用仅仅方法区就有数百兆,如果要逐个检查这里面的引用,那么必然会消耗很多时间。另外,可达性分析对执行时间的敏感还体现在GC停顿上,因为这项分析工作必须在一个能确保一致性的快照中进行——这里“一致性”的意思是指在整个分析期间整个执行系统看起来就像被冻结在某个时间点上,不可以出现分析过程中对象引用关系还在不断变化的情况,该点不满足的话分析结果准确性就无法得到保证。这点是导致GC进行时必须停顿所有Java执行线程(Sun将这件事情称为“Stop The World”)的其中一个重要原因,即使是在号称(几乎)不会发生停顿的CMS收集器中,枚举根节点时也是必须要停顿的。

由于目前的主流Java虚拟机使用的都是准确式GC,所以当执行系统停顿下来后,并不需要一个不漏地检查完所有执行上下文和全局的引用位置,虚拟机应当是有办法直接得知哪些地方存放着对象引用。在HotSpot的实现中,是使用一组称为OopMap的数据结构来达到这个目的的,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也会在特定的位置记录下栈和寄存器中哪些位置是引用。这样,GC在扫描时就可以直接得知这些信息了。

下面是HotSpot Client VM生成的一段String.hashCode()方法的本地代码,可以看到在0x026eb7a9处的call指令有OopMap记录,它指明了EBX寄存器和栈中偏移量为16的内存区域中各有一个普通对象指针(Ordinary Object Pointer)的引用,有效范围为从call指令开始直到0x026eb730(指令流的起始位置)+142(OopMap记录的偏移量)=0x026eb7be,即hlt指令为止。

[Verified Entry Point]
0x026eb730:mov%eax,-0x8000(%esp)
……
;ImplicitNullCheckStub slow case
0x026eb7a9:call 0x026e83e0
;OopMap{ebx=Oop[16]=Oop off=142}
;*caload
;-java.lang.String:[email protected](line 1489)
;{runtime_call}
0x026eb7ae:push$0x83c5c18
;{external_word}
0x026eb7b3:call 0x026eb7b8
0x026eb7b8:pusha
0x026eb7b9:call 0x0822bec0;{runtime_call}
0x026eb7be:hlt

安全点

在OopMap的协助下,HotSpot可以快速且准确地完成GC Roots枚举,但一个很现实的问题随之而来:可能导致引用关系变化,或者说OopMap内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外空间,这样GC的空间成本将会变得很高。

实际上,HotSpot也的确没有为每条指令都生成OopMap,只是在“特定的位置”记录了这些信息,这些位置称为安全点(Safepoint),即程序执行时并非在所有地方都能停顿下来开始GC,只有在到达安全点时才能暂停。Safepoint的选定既不能太少以致于让GC等待时间太长,也不能过于频繁以致于过分增大运行时的负荷。所以,安全点的选定基本上是以程序“是否具有让程序长时间执行的特征”为标准进行选定的——因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这个原因而过长时间运行,“长时间执行”的最明显特征就是指令序列复用,例如方法调用、循环跳转、异常跳转等,所以具有这些功能的指令才会产生Safepoint。

对于Sefepoint,另一个需要考虑的问题是如何在GC发生时让所有线程(这里不包括执行JNI调用的线程)都“跑”到最近的安全点上再停顿下来。

这里有两种方案可供选择:抢先式中断(Preemptive Suspension)和主动式中断(Voluntary Suspension)。

抢先式中断不需要线程的执行代码主动去配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它“跑”到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程从而响应GC事件。

而主动式中断的思想是当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方。

下面的test指令是HotSpot生成的轮询指令,当需要暂停线程时,虚拟机把0x160100的内存页设置为不可读,线程执行到test指令时就会产生一个自陷异常信号,在预先注册的异常处理器中暂停线程实现等待,这样一条汇编指令便完成安全点轮询和触发线程中断。

0x01b6d627:call 0x01b2b210;OopMap{[60]=Oop off=460}
;*invokeinterface size
;-Client1:[email protected](line 23)
;{virtual_call}
0x01b6d62c:nop
;OopMap{[60]=Oop off=461}
;*if_icmplt
;-Client1:[email protected](line 23)
0x01b6d62d:test%eax,0x160100;{poll}
0x01b6d633:mov 0x50(%esp),%esi
0x01b6d637:cmp%eax,%esi

安全区域

使用Safepoint似乎已经完美地解决了如何进入GC的问题,但实际情况却并不一定。Safepoint机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。但是,程序“不执行”的时候呢?所谓的程序不执行就是没有分配CPU时间,典型的例子就是线程处于Sleep状态或者Blocked状态,这时候线程无法响应JVM的中断请求,“走”到安全的地方去中断挂起,JVM也显然不太可能等待线程重新被分配CPU时间。对于这种情况,就需要安全区域(Safe Region)来解决。

安全区域是指在一段代码片段之中,引用关系不会发生变化。在这个区域中的任意地方开始GC都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint。

在线程执行到Safe Region中的代码时,首先标识自己已经进入了Safe Region,那样,当在这段时间里JVM要发起GC时,就不用管标识自己为Safe Region状态的线程了。在线程要离开Safe Region时,它要检查系统是否已经完成了根节点枚举(或者是整个GC过程),如果完成了,那线程就继续执行,否则它就必须等待直到收到可以安全离开Safe Region的信号为止。

时间: 2024-08-25 01:51:57

枚举GC Roots的实现的相关文章

枚举GC Roots根节点

引言 判断对象是否被回收的算法有引用计数算法和可达性分析算法.其中可达性分析算法是根据GC Roots根节点作为起始点向下搜索引用链,找不到引用链则判定对象可回收. 可作为GC Roots根节点的对象主要是在全局性的引用(如常量.类静态属性)和执行上下文中(如栈帧中的本地变量表),现在的很多应用仅方法区就有数百兆,逐个检查里边的引用显然很耗费时间. 枚举GC Roots根节点 在HotSpot实现中,利用了空间换取时间,是使用一组OopMap的数据结构来完成的.类加载完成后,会把对象内什么偏移量

GC roots 总结

previous      content      next GC roots The so-called GC (Garbage Collector) roots are objects special for garbage collector. Garbage collector collects those objects that are not GC roots and are not accessible by references from GC roots. There ar

什么是GC Roots

GC Root 2012年11月28日  ? 综合 ? 共 625字 ? 字号  小 中 大  ? 评论关闭 常说的GC(Garbage Collector) roots,特指的是垃圾收集器(Garbage Collector)的对象,GC会收集那些不是GC roots且没有被GC roots引用的对象. 一个对象可以属于多个root,GC root有几下种: Class - 由系统类加载器(system class loader)加载的对象,这些类是不能够被回收的,他们可以以静态字段的方式保存

(转)GC ROOTS

还是英文的技术博客更给力,更清楚,本人懒,没有翻译. In your specific example, in any managed environment, Person is not a GC root; the GC root is the thingwhich holds the reference to Person. The difference is subtle, but important in the context of this question. Although m

JAVA程序员养成计划之JVM学习笔记(2)-垃圾收集管理

本文对JVM垃圾收集进行说明,包括三种不同算法(标记复制.标记清除.标记整理),以及七种不同的垃圾收集器(Serial,ParNew,Serial Scavenge, CMS, Serial Old, Parallel Old, G1) 持续更新中- - 1. 垃圾回收相关概念 1.1. 垃圾回收对象 说到垃圾收集,首先得确定哪些是可回收的对象,这里涉及到java的四种引用方式,即强.软.弱.虚四类引用. 强引用:即普遍存在的对对象的引用,如指向通过new创建的对象 软引用:即程序运行非必须的对

JVM(四)垃圾回收的实现算法和执行细节

全文共 1890 个字,读完大约需要 6 分钟. 上一篇我们讲了垃圾标记的一些实现细节和经典算法,而本文将系统的讲解一下垃圾回收的经典算法,和Hotspot虚拟机执行垃圾回收的一些实现细节,比如安全点和安全区域等. 因为各个平台的虚拟机操作内存的方法各不相同,且牵扯大量的程序实现细节,所以本文不会过多的讨论算法的具体实现,只会介绍几种算法思想及发展过程. 垃圾回收算法 1.标记-清除算法 标记-清除算法是最基础的算法,像它的名字一样算法分为"标记"和"清除"两个阶段

你必须了解的java内存管理机制(三)-垃圾标记

本文在个人技术博客不同步发布,详情可用力戳 亦可扫描屏幕右侧二维码关注个人公众号,公众号内有个人联系方式,等你来撩... 相关链接(注:文章讲解JVM以Hotspot虚拟机为例,jdk版本为1.8) 1. 你必须了解的java内存管理机制-运行时数据区 2. 你必须了解的java内存管理机制-内存分配 3. 你必须了解的java内存管理机制-垃圾标记 前言 前面花了两篇文章对JVM的内存管理机制做了较多的介绍,通过第一篇文章先了解了JVM的运行时数据区,然后在第二篇文章中通过一个创建对象的实例介

Java程序员必备技能内存管理机——垃圾标记

正文 1.怎么找到存活对象? 通过上篇文章我们知道,JVM创建对象时会通过某种方式从内存中划分一块区域进行分配.那么当我们服务器源源不断的接收请求的时候,就会频繁的需要进行内存分配的操作,但是我们服务器的内存确是非常有限的呢!所以对不再使用的内存进行回收再利用就成了JVM肩负的重任了! 那么,摆在JVM面前的问题来了,怎么判断哪些内存不再使用了?怎么合理.高效的进行回收操作?既然要回收,那第一步就是要找到需要回收的对象! 1.1.引用计数法 实现思路:给对象添加一个引用计数器,每当有一个地方引用

JVM调优系列:(四)GC垃圾回收

跟踪收集算法: 复制(copying): 将堆内分成两个相同空间,从根(ThreadLocal的对象,静态对象)开始访问每一个关联的活跃对象,将空间A的活跃对象全部复制到空间B,然后一次性回收整个空间A.因为只访问活跃对象,将所有活动对象复制走之后就清空整个空间,不用去访问死对象,不需要标记骤,所以遍历空间的成本较小,但需要巨大的复制成本和较多的内存. 标记清除(mark-sweep): 收集器先从根开始访问所有对象,标记活跃对象.然后再遍历一次整个内存区域,把所有没有标记活跃的对象进行回收处理