C#按位运算

在C#中可以对整型运算对象按位进行逻辑运算。按位进行逻辑运算的意义是:依次取被运算对象的每个位,进行逻辑运算,每个位的逻辑运算结果是结果值的每个位。C#支持的位逻辑运算符如表2.9所示。


运算符号

意义

运算对象类型

运算结果类型

对象数

实例

~

位逻辑运算

整型,字符型

整型

1

~a

&

位逻辑运算

2

a & b

|

位逻辑运算

2

a | b

^

位逻辑异或运算

2

a ^ b

<< 

左移运算

2

a<<4

>> 

右移运算

2

a>>2

1、位逻辑非运算

位逻辑非运算是单目的,只有一个运算对象。位逻辑非运算按位对运算对象的值进行非运算,即:如果某一位等于0,就将其转变为1;如果某一位等于1,就将其转变为0。

比如,对二进制的10010001进行位逻辑非运算,结果等于01101110,用十进制表示就是:

~145等于110;对二进制的01010101进行位逻辑非运算,结果等于10101010。用十进制表示就是~85等于176。

2、位逻辑与运算

位逻辑与运算将两个运算对象按位进行与运算。与运算的规则:1与1等于1,1与0等于0。

比如:10010001(二进制)&11110000等于10010000(二进制)。

3、位逻辑或运算

位逻辑或运算将两个运算对象按位进行或运算。或运算的规则是:1或1等1,1或0等于1,

0或0等于0。比如10010001(二进制)| 11110000(二进制)等于11110001(二进制)。

4、位逻辑异或运算

位逻辑异或运算将两个运算对象按位进行异或运算。异或运算的规则是:1异或1等于0,

1异或0等于1,0异或0等于0。即:相同得0,相异得1。

比如:10010001(二进制)^11110000(二进制)等于01100001(二进制)。

5、位左移运算

位左移运算将整个数按位左移若干位,左移后空出的部分0。比如:8位的byte型变量

byte a=0x65(即二进制的01100101),将其左移3位:a<<3的结果是0x27(即二进制的00101000)。

6、位右移运算

位右移运算将整个数按位右移若干位,右移后空出的部分填0。比如:8位的byte型变量

Byte a=0x65(既(二进制的01100101))将其右移3位:a>>3的结果是0x0c(二进制00001100)。

在进行位与、或、异或运算时,如果两个运算对象的类型一致,则运算结果的类型就是运算对象的类型。比如对两个int变量a和b做与运算,运算结果的类型还是int型。如果两个运算

对象的类型不一致,则C#要对不一致的类型进行类型转换,变成一致的类型,然后进行运算。

类型转换的规则同算术运算中整型量的转换则一致。

由位运算符连接整型量而成的表达式就是位运算表达式。

 

 

(详解2)

一、“按位与”运算符(&) 
   1、运算规则
     参加运算的两个数据,按二进位进行“与”运算,如果两个相应的二进位都为1,则该位的结果值为1,否则为0,即:
    0&0=0,0&1=0,1&0=0,1&1=1.
   2、用途
     (1)清零
        运算对象:原来的数中为1的位,新数中相应位为0。
    (2)取一个数中某些指定位。
       如想要取一个整数a(占2个字节)的低(高)字节,只需将a与八进制的377(177400)按位与即可。
    (3)保留某一个数的某一位。
        与一个数进行&运算,此数在该位取1。
    3、例如:9&5可写算式如下: 00001001 (9的二进制补码)&00000101 (5的二进制补码) 00000001 (1的二进制补码)可见9&5=1。
  按位与运算通常用来对某些位清0或保留某些位。例如把a 的高八位清 0 , 保留低八位, 可作 a&255 运算 ( 255 的二进制数为0000000011111111)。
main(){
int a=9,b=5,c;
c=a&b;
printf("a=%d\nb=%d\nc=%d\n",a,b,c);
}

二、 按位或运算符(|)
   1、运算规则
     参加运算的两个数据,按二进位进行“或”运算,如果两个相应的二进位都为0,则该位的结果值为0,否则为1,即:
    0|0=0,0|1=1,1|0=1,1|1=1。
   2、用途
     对一个数据的某些位定值为1。
3.例如:9|5可写算式如下: 00001001|00000101
00001101 (十进制为13)可见9|5=13
main(){
int a=9,b=5,c;
c=a|b;
printf("a=%d\nb=%d\nc=%d\n",a,b,c);
}
 
三、“异或”运算符(^)
   也称XOR运算符。
   1、运算规则
     若参加运算的两个二进位同号,则结果为0(假);异号则为1(真),即:
    0^0=0,0^1=1,1^0=1,1^1=0.
   2、用途
     (1)使特定位翻转
        假设有01111010,想使其低4位翻转,可以将它与00001111进行^运算。
    (2)与0相^,保留原值
    (3)交换两个值,不用临时变量
        假如a=3,b=4。想将a和b的值互换,可以用以下赋值语句实现:
        a=a^b; b=b^a;     a=a^b;
 3、例如9^5可写成算式如下: 00001001^00000101 00001100 (十进制为12)
main(){
int a=9;
a=a^15;
printf("a=%d\n",a);
}

四、“取反”运算符(~)
   1、运算规则
   ~是一个单目(元)运算符,用来对一个二进制数按位取反,即将0变1,1变0。
   2、用途
    使一个整数a的最低位为0,可以用:a=a&~1;
 3、例如~9的运算为: ~(0000000000001001)结果为:1111111111110110

五、 左移运算符(<<)
   1、运算规则
   用来将一个数的各二进位全部左移若干位,右补0,高位左移后溢出,舍弃不起作用。
   2、用途
    左移一位相当于乘以2
3、
例如:设 a=15,a>>2 表示把000001111右移为00000011(十进制3)。
应该说明的是,对于有符号数,在右移时,符号位将随同移动。当为正数时, 最高位补0,而为负数时,符号位为1,最高位是补0或是补1
取决于编译系统的规定。Turbo C和很多系统规定为补1。
main(){
unsigned a,b;
printf("input a number: ");
scanf("%d",&a);
b=a>>5;
b=b&15;
printf("a=%d\tb=%d\n",a,b);
}
请再看一例!
main(){
char a=‘a‘,b=‘b‘;
int p,c,d;
p=a;
p=(p<<8)|b;
d=p&0xff;
c=(p&0xff00)>>8;
printf("a=%d\nb=%d\nc=%d\nd=%d\n",a,b,c,d);
}
   
六、 右移运算符(>>)
   1、运算规则
   用来将一个数的各二进位全部右移若干位,移到右端的低位被舍弃,对无符号数,高位补0;
    对有符号数,左边移入0(“逻辑右移”)或1(“算术右移”)
   2、用途
    右移一位相当于除以2
    
七、位运算赋值运算符
     位运算符与赋值运算符可以组成复合赋值运算符,如:
     &=,|=,>>=,<<=,^=
 
八、不同长度的数据进行位运算
    如果两个数据长度不同,进行位运算时(如:a&b,而a为long型,b为int型),系统会将二者按右端对齐。如果b为正数,则左侧16位补满0,若b为负数,左端应补满1,如果b为无符号整数型,则左端填满0。

位域

有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态,
用一位二进位即可。为了节省存储空间,并使处理简便,C语言又提供了一种数据结构,称为“位域”或“位段”。所谓“位域”是把一个字节中的二进位划分为几
个不同的区域, 并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。
这样就可以把几个不同的对象用一个字节的二进制位域来表示。一、位域的定义和位域变量的说明位域定义与结构定义相仿,其形式为: 
struct 位域结构名 
{ 位域列表 };
其中位域列表的形式为: 类型说明符 位域名:位域长度

例如: 
struct bs
{
int a:8;
int b:2;
int c:6;
};
位域变量的说明与结构变量说明的方式相同。 可采用先定义后说明,同时定义说明或者直接说明这三种方式。例如: 
struct bs
{
int a:8;
int b:2;
int c:6;
}data;
说明data为bs变量,共占两个字节。其中位域a占8位,位域b占2位,位域c占6位。对于位域的定义尚有以下几点说明:

1、一个位域必须存储在同一个字节中,不能跨两个字节。如一个字节所剩空间不够存放另一位域时,应从下一单元起存放该位域。也可以有意使某位域从下一单元开始。例如: 
struct bs
{
unsigned a:4
unsigned :0 /*空域*/
unsigned b:4 /*从下一单元开始存放*/
unsigned c:4
}
在这个位域定义中,a占第一字节的4位,后4位填0表示不使用,b从第二字节开始,占用4位,c占用4位。

2、由于位域不允许跨两个字节,因此位域的长度不能大于一个字节的长度,也就是说不能超过8位二进位。

3、位域可以无位域名,这时它只用来作填充或调整位置。无名的位域是不能使用的。例如: 
struct k
{
int a:1
int :2 /*该2位不能使用*/
int b:3
int c:2
};
从以上分析可以看出,位域在本质上就是一种结构类型, 不过其成员是按二进位分配的。

二、位域的使用位域的使用和结构成员的使用相同,其一般形式为: 位域变量名·位域名 位域允许用各种格式输出。
main(){
struct bs
{
unsigned a:1;
unsigned b:3;
unsigned c:4;
} bit,*pbit;
bit.a=1;
bit.b=7;
bit.c=15;
printf("%d,%d,%d\n",bit.a,bit.b,bit.c);
pbit=&bit;
pbit->a=0;
pbit->b&=3;
pbit->c|=1;
printf("%d,%d,%d\n",pbit->a,pbit->b,pbit->c);
}

上例程序中定义了位域结构bs,三个位域为a,b,c。说明了bs类型的变量bit和指向bs类型的指针变量pbit。这表示位域也是可以使用指针的。

序的9、10、11三行分别给三个位域赋值。(
应注意赋值不能超过该位域的允许范围)程序第12行以整型量格式输出三个域的内容。第13行把位域变量bit的地址送给指针变量pbit。第14行用指针
方式给位域a重新赋值,赋为0。第15行使用了复合的位运算符"&=", 该行相当于:
pbit->b=pbit->b&3位域b中原有值为7,与3作按位与运算的结果为3(111&011=011,十进制值为
3)。同样,程序第16行中使用了复合位运算"|=", 相当于:
pbit->c=pbit->c|1其结果为15。程序第17行用指针方式输出了这三个域的值。

类型定义符typedef

C语言不仅提供了丰富的数据类型,而且还允许由用户自己定义类型说明符,也就是说允许由用户为数据类型取“别名”。
类型定义符typedef即可用来完成此功能。例如,有整型量a,b,其说明如下: int aa,b;
其中int是整型变量的类型说明符。int的完整写法为integer,

为了增加程序的可读性,可把整型说明符用typedef定义为: typedef int INTEGER
这以后就可用INTEGER来代替int作整型变量的类型说明了。 例如: INTEGER a,b;它等效于: int a,b;
用typedef定义数组、指针、结构等类型将带来很大的方便,不仅使程序书写简单而且使意义更为明确,因而增强了可读性。例如:
typedef char NAME[20]; 表示NAME是字符数组类型,数组长度为20。
然后可用NAME 说明变量,如: NAME a1,a2,s1,s2;完全等效于: char a1[20],a2[20],s1[20],s2[20]
又如: 
typedef struct stu{ char name[20];
int age;
char sex;
} STU;
定义STU表示stu的结构类型,然后可用STU来说明结构变量: STU body1,body2;
typedef定义的一般形式为: typedef 原类型名 新类型名 其中原类型名中含有定义部分,新类型名一般用大写表示, 以
便于区别。在有时也可用宏定义来代替typedef的功能,但是宏定义是由预处理完成的,而typedef则是在编译时完成的,后者更为灵活方便。

例子:
例如有中种颜色选择,1代表红,2代表蓝,4带表黑,8带表白
1=0000 0001
2=0000 0010
4=0000 0100
8=0000 1000

如果你选择了2和4(既红和黑)则1(0000 0001)或2(0000 0010)或4(0000 0100)=7(0000 0101)
如果提供7给你,你怎么知道选择了1和2和4呢?答案是:7跟四个数1,2,4,8分别做或结果还是7,则说明某个被选择了
如:7或2=7,所以1被选择了   7或8=15,不等于7哦,所以8没被选择了   ,这样应该知道用途了吧

具体的位运算方式如下:

运算名称意义
运算对象类型
 运算结果类型 对象数 实例 ~位逻辑非运算
 整型或字符型整型
 1 ~a & 位逻辑与运算整型或字符型
 整型 2 a&b | 位逻辑或运算整型或字符型整型 2 a|b^
 位逻辑异或运算 整型或字符型 整型 1 ^a << 位左移运算 整型或字符型 整型 2 a<<4 >> 位又移运算 整型或字符型 整型 2 a>>2

 

时间: 2024-11-07 12:24:21

C#按位运算的相关文章

位运算

位运算的实际应用场景 http://blog.csdn.net/zmazon/article/details/8262185

POJ 1781 In Danger Joseph环 位运算解法

Joseph环,这次模固定是2.假设不是固定模2,那么一般时间效率是O(n).可是这次由于固定模2,那么能够利用2的特殊性,把时间效率提高到O(1). 规律能够看下图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQva2VuZGVuMjM=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" > 具体具体解析请看大师Knuth的Concrete m

位运算总结&amp;拾遗

JavaScript 位运算总结&拾遗 最近补充了一些位运算的知识,深感位运算的博大精深,此文作为这个系列的总结篇,在此回顾下所学的位运算知识和应用,同时也补充下前文中没有提到的一些位运算知识. 把一个数变为大于等于该数的最小的2的幂 一个数为2的幂,那么该数的二进制码只有最高位是1. 根据这个性质,我们来举个栗子,比如有数字10,转为二进制码后为: 1 0 1 0 我们只需把 0 bit的位置全部用1填充,然后再把该二进制码加1就ok了.而x | (x + 1)正好可以把最右边的0置为1,可是

Java I/O : Bit Operation 位运算

Writer      :BYSocket(泥沙砖瓦浆木匠) 微         博:BYSocket 豆         瓣:BYSocket FaceBook:BYSocket Twitter    :BYSocket 泥瓦匠喜欢Java,文章总是扯扯Java. I/O 基础,就是二进制,也就是Bit. 一.Bit与二进制 什么是Bit(位)呢?位是CPU处理或者数据存储最小的单元.类似于很小很小的开关,一开一关,表示为1或者0.所以,这就是计算机处理任何数据的"细胞",要谨记.

mysql位运算

1.MOD(X1,X2) 求余运算,返回余数同"%" 2.X1 DIV X2 除法运算返回商,同"/" 3.如果除数为0,那么结果为NULL. 4.<=>和= 是一样的,也是用来判断操作数是否相等的.不同的是<=>可以用来判断null,=不能判断null. 例:select null<=>null 结果1 逻辑运算符 1.与&&或and:所有操作数不为0且不为null时,结果为1,任何一操作数为0,结果为0,存在一

位运算之 C 与或非异或

位运算比较易混: 位运算之 C 与或非异或 与运算:& 两者都为1为1,否则为0 1&1=1,  1&0=0,  0&1=0,  0&0=0 或运算:| 两者都为0为0,否则为1 1|1 = 1,  1|0 = 1,  0|1 = 1, 0|0 = 0 非运算:~ 1取0,0取1 ~1 = 0, ~0 = 1 ~(10001) = 01110 异或运算:^ 两者相等为0,不等为1(易混淆) 1^1=0, 1^0=1, 0^1=1, 0^0=0 位移操作符:<&

Java的位运算

左移位操作 左移位运算的符号为[<<],左移位运算符左面的操作元称作被移位数,右面的操作数称作移位量. 左移位运算是双目运算符,操作元必须是整型类型的数据,其移动过程是:[a << n]运算的过程是通过将a的所有位都左移n位,每左移一个位,左边的最高位上的0或1被移出丢弃,并用0填充右边的低位 注意: 如果a是byte.short或int型数据,总是先计算出n%32的结果m,然后进行a<<m运算 对于long型数据,总是先计算出n%64的结果m,然后进行a <&l

常见的位运算

位运算主要有:|   &   ^    ~ & 这个是只要有0,则0 | 这个只要有1,则1 ^异或运算,只要不同则为1 ~全部相反 参与位运算首先要将数值化作为二进制补码,方可参与运算 >>                                               >>>                                << 有符号右移                                无符号右移   

C位运算笔记(根据网上内容整理)1

什么是位运算?    程序中的所有数在计算机内存中都是以二进制的形式储存的.位运算说穿了,就是直接对整数在内存中的二进制位进行操作.由于位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快. 各种位运算的使用 === 1. and运算 ===(同真为真) and运算通常用于二进制取位操作,例如一个数 and 1的结果就是取二进制的最末位.这可以用来判断一个整数的奇偶,二进制的最末位为0表示该数为偶数,最末位为1表示该数为奇数. === 2. or运算 ===(一真为真) or运算通

位运算和关于两个数交换的多种方法

我们知道,位运算在计算中有着广泛的应用. 在计算机的各种编程语言中位运算也是一种不可缺少的运算,尤其是在计算机的底层实现代码中. 以下我们就来介绍一下位运算. 1.左移运算<<  左移右移都是移动二进制数 0000-0000 0000-0000 0000-0000 0000-1100     =12 向左移动一位变为(右边缺几位就补几个0) 0000-0000 0000-0000 0000-0000 0001 1000       =24 再向左移一位 0000-0000 0000-0000